# **STATISTICS**

# CONCEPT OF ARITHMETIC MEAN

### MEAN (ARITHMETIC MEAN OF INDIVIDUAL OBSERVATIONS) OR UNGROUPED DATA

Mean of 'n' numbers  $x_1, x_2, x_3, \dots, x_n = \frac{sum \ of \ observation}{number \ of \ observation}$ 

$$\overline{\mathbf{X}} = \frac{\mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3 + \dots + \mathbf{X}_n}{n} = \frac{\sum_{i=1}^n \mathbf{X}_i}{n}$$

**Ex. 1** If the heights of 5 persons are 144 cm, 152 cm, 151 cm, 158 cm and 155 cm respectivly find the mean height.

Sol. Mean height 
$$=\frac{144+152+151+158+155}{5}=\frac{760}{5}cm=152cm$$

- **Ex.2** Neeta and her four friends secured 65, 78, 82, 94 and 71 marks in a test of mathematics. Find the average (arithmetic mean) of their marks.
- **Sol.** Arithmetic mean or average

$$=\frac{65+78+82+94+71}{5}=\frac{390}{5}=78$$

Hence, arithmetic mean = 78

- Ex.3 The marks obtained by 10 students in physics out of 40 are 24, 27, 29, 34, 32, 19, 26, 35, 18, 21. Compute the mean of the marks.
- Sol. Mean of the marks is given by

$$x = \frac{24+27+29+34+32+19+26+35+18+21}{10}$$
$$= \frac{265}{10} = 26.50$$

**Ex.4** The mean of 20 observations was found to be 47. But later it was discovered that one observation 66 was wrongly taken as 86. Find the correct mean.

**Sol.** Here, 
$$n = 20$$
,  $\bar{X} = 47$ 

We have, 
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} \quad \therefore 47 = \frac{\sum_{i=1}^{n} X_i}{20}$$

$$\sum_{i=1}^{n} x_i = 47 \times 20 = 940.$$

But the score 66 was wrongly taken as 86.

$$\therefore \text{ Correct value of } \sum_{i=1}^{n} x_i = 940 + 66 - 86 = 920$$
$$\therefore \text{ Correct mean} = \frac{920}{20} = 46$$

**Ex.5** If 
$$\overline{X}$$
 denote the mean of  $x_1, x_2, ..., x_n$ , show that  $\sum_{i=1}^{n} = (x_i - \overline{x})^{n}$ 

Sol. 
$$\bar{x} = \frac{x_1 + x_2 + ... + x_n}{n}$$
  
 $= x_1 + x_2 + ... + x_n = n\bar{X}$  (i)  
 $= \Sigma(x_1 - \bar{X}) = (x_1 - \bar{X}) + (x_2 - \bar{X}) + .... + (x_n - x_1)$   
 $= (x_1 + x_2 + ... + x_n) - n\bar{X} = n\bar{X} - n\bar{X}$   
 $= 0$  (from (i))

### MEAN OF UNGROUPED DATA OR DISCRETE FREQUENCY DISTRIBUTION

- (i) Direct method
- (ii) Assumed mean method
- (iii) Step deviation method or shortcut method

# **1 Direct method (**For the discrete frequency distribution)

| x <sub>i</sub> | x <sub>1</sub> | <b>x</b> <sub>2</sub> | x <sub>3</sub> | ••••• | x <sub>n</sub> |
|----------------|----------------|-----------------------|----------------|-------|----------------|
| f <sub>i</sub> | $f_1$          | $f_2$                 | f <sub>3</sub> | ••••• | f <sub>n</sub> |

Mean of 'n' observations  ${\rm x}_1,{\rm x}_2,{\rm x}_3,{\rm x}_4$  ......{\rm x}\_n with frequencies  ${\rm f}_1,{\rm f}_2,{\rm f}_3....{\rm f}_n$  is given by

Mean = 
$$X = \frac{f_1 x_1 + f_2 x_2 + f_3 x_3 \dots + f_n x_n}{f_1 + f_2 + f_3 + \dots + f_n} = \sum_{i=1}^n f_i$$

**Ex. 6** Find the mean of the following distribution:

| X: | 4 | 6  | 9  | 10 | 15 |
|----|---|----|----|----|----|
| F: | 5 | 10 | 10 | 7  | 8  |

Sol.

| Xi | fi           | f <sub>i</sub> x <sub>i</sub> |
|----|--------------|-------------------------------|
| 4  | 5            | 20                            |
| 6  | 10           | 60                            |
| 9  | 10           | 90                            |
| 10 | 7            | 70                            |
| 15 | 8            | 120                           |
|    | $N=\sum f_i$ | $\sum f_i x_i = 360$          |
|    | = 40         |                               |
|    |              |                               |

Mean  

$$\overline{X} = \frac{\sum f_i x_i}{\sum f_i}$$

$$= \frac{360}{40} = 9$$

$$\overline{X} = 9$$

MATHS

**Ex. 7** Find the value of K if mean of the following data is 14.

| x <sub>i</sub> | 5 | 10 | 15 | 20 | 25 |
|----------------|---|----|----|----|----|
| f <sub>i</sub> | 7 | k  | 8  | 4  | 5  |

Sol.

| X <sub>i</sub> | f <sub>i</sub>                | f <sub>i</sub> x <sub>i</sub>        |
|----------------|-------------------------------|--------------------------------------|
| 5              | 7                             | 35                                   |
| 10             | k                             | 10k                                  |
| 15             | 8                             | 120                                  |
| 20             | 4                             | 80                                   |
| 25             | 5                             | 125                                  |
| Total          | $\sum_{i=1}^{n} f_i = 24 + k$ | $\sum_{i=1}^{n} f_i x_i = 360 + 10k$ |



**Ex.8** Find the mean of the following distribution :

| x : | 4 | 6  | 9  | 10 | 15 |
|-----|---|----|----|----|----|
| F:  | 5 | 10 | 10 | 7  | 8  |

#### MATHS

### CLASS 10

Sol. Calculation of Arithmetic Mean

| x <sub>i</sub> | fi  | f <sub>i</sub> x <sub>i</sub> |
|----------------|-----|-------------------------------|
| 4              | 5   | 20                            |
| 6              | 10  | 60                            |
| 9              | 10  | 90                            |
| 10             | 7   | 70                            |
| 15             | 8   | 120                           |
| N=\Sf_i        | =40 | $\Sigma f_i x_i = 360$        |

$$\therefore \qquad \text{Mean} = X = \frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{360}{40} = 9$$

### ASUUMED MEAN METHOD

Arithmetic mean =a + 
$$\frac{\sum_{i=1}^{n} f_i d_i}{\sum_{i=1}^{n} f_i}$$

Note : The assumed mean is chosen, in such a manner, that

- **1.** It should be one of the central values.
- **2.** The deviation are small.
- **3.** One deviation is zero.

### Working Rule :

- **Step 1 :** Choose a number 'a' from the central values of x of the first column, that will be our assumed mean.
- Step 2: Obtain deviations d<sub>i</sub> by subtracting 'a' from x<sub>i</sub>. Write down hese deviations against the corresponding frequencies in the third column.

- **Step 4 :** Find the sum of all the entries of fourth column to obtain  $\sum f_i d_i$  and also, find the sum of all the frequencies in the second column to obtain  $\sum f_i$ .
- **Ex. 9** The following table shows the weights of 12 students:

| Weight (kg)        | 67 | 70 | 72 | 73 | 75 |
|--------------------|----|----|----|----|----|
| Number of students | 4  | 3  | 2  | 2  | 1  |

### Find the mean weight

**Sol.** Let the assumed mean be a = 72

| Weight (in kg) | Number of students      | $d_i = x_i - a$ | $f_i d_i$            |
|----------------|-------------------------|-----------------|----------------------|
| Xi             | $\mathbf{f}_{i}$        | $= x_i - 72$    |                      |
| 67             | 4                       | -5              | -20                  |
| 70             | 3                       | -2              | -6                   |
| 72             | 2                       | 0               | 0                    |
| 73             | 2                       | 1               | 2                    |
| 75             | 1                       | 3               | 3                    |
|                | $N = \Sigma_{f_i} = 12$ |                 | $\sum f_i d_i = -21$ |

We have N = 12  $f_i d_i = -21$  and a = 72

$$\therefore \text{ Mean} = a + \frac{1}{N} \sum f_i d_i$$

$$72 + \left(\frac{-21}{12}\right) = 72 - \frac{7}{4} = \frac{288 - 7}{4} = \frac{281}{4}$$

= 70.25 kg

**Ex.10** The following table gives the distribution of total household expenditure (in rupees)

of manual workers in a city.

| Expenditure<br>(in rupees) | 100-150 | 150-200 | 200-250 | 250-300 | 300-350 | 350-400 | 400-450 | 450-500 |
|----------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Frequency                  | 24      | 40      | 33      | 28      | 30      | 22      | 16      | 7       |

### **Sol.** Let assumed mean = 275

| Expenditure | Frequency        | Mid                     | $d_i = x - 275$ | $f_i d_i$        |
|-------------|------------------|-------------------------|-----------------|------------------|
| (in rupees) | $(f_i)$          | value (x <sub>i</sub> ) |                 |                  |
| 100-150     | 24               | 125                     | -150            | -3600            |
| 150-200     | 40               | 175                     | -100            | -4000            |
| 200-250     | 33               | 225                     | -50             | -1650            |
| 250-300     | 28               | 275                     | 0               | 0                |
| 300-350     | 30               | 325                     | 50              | 1500             |
| 350-400     | 22               | 375                     | 100             | 2200             |
| 400-450     | 16               | 425                     | 150             | 2400             |
| 450-500     | 7                | 475                     | 200             | 1400             |
|             | $\sum f_i = 200$ |                         |                 | $\sum f_i d_i =$ |
|             |                  |                         |                 | - 1750           |

$$x=a+\frac{\Sigma f_i d_i}{\Sigma f_i} = 275 + \frac{-1750}{200} = \text{Rs } 266.25$$

### **Step Deviation Method**

Deviation method can be further simplified on dividing the deviation by width of the class interval h. In such a case the arithmetic mean is reduced to a great extent.

$$\Rightarrow$$
 Mean (X) = a +  $\frac{\Sigma f_i u_i}{\Sigma f_i} \times h$ 

### Working Rule :

**Step-1**: Choose a number 'a' from the central values of x(mid-values)

**Step-2**: Obtain  $u_i = \frac{x_i - a}{h}$ 

**Step-3**: Multiply the frequency  $f_i$  with the corresponding  $u_i$  to get  $f_i u_i$ .

**Step-4**: Find the sum of all  $f_i u_i$  i.e.,  $\Sigma f_i u_i$ 

MATHS

#### CLASS 10

**Step-5**: Use the formula 
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i}$$
. h to get the required mean.

Ex.11 Apply step- deviation method to find the AM of the distribution

| Variate(x):   | 5  | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
|---------------|----|----|----|----|----|----|----|----|----|----|
| Frequency(f): | 20 | 43 | 75 | 67 | 72 | 45 | 39 | 9  | 8  | 6  |

**Sol.** Let the assumed mean be a = 25 & h = 5

| Variate        | Frequency        | Deviations   | $x_{i} - 25$        | $f_i u_i$        |
|----------------|------------------|--------------|---------------------|------------------|
| X <sub>i</sub> | $\mathbf{f}_{i}$ | $d_i=x_i-25$ | $u_i = \frac{1}{5}$ |                  |
| 5              | 20               | -20          | -4                  | -80              |
| 10             | 43               | -15          | -3                  | -129             |
| 15             | 75               | -10          | -2                  | -150             |
| 20             | 67               | -5           | -1                  | -67              |
| 25             | 72               | 0            | 0                   | 0                |
| 30             | 45               | 5            | 1                   | 45               |
| 35             | 39               | 10           | 2                   | 78               |
| 40             | 9                | 15           | 3                   | 27               |
| 45             | 8                | 20           | 4                   | 32               |
| 50             | 6                | 25           | 5                   | 30               |
|                | $N = f_i$        |              |                     | $f_i u_i = -214$ |
|                | = 384            |              |                     |                  |

We have N = 384, a = 25, h = 5, and  $f_i u_i = 214$   $\therefore$  Mean = a + h  $\therefore$  Mean  $= \overline{X} = A + h\left(\frac{1}{N}\sum f_i u_i\right)$ Mean  $= 25 + 5 \times \left(\frac{-214}{384}\right)$ 25 - 2:786

 $\begin{bmatrix} \overline{\mathbf{X}} &= 22:214 \end{bmatrix}$ 

**Ex.12** To find out the concentration of  $SO_2$  in the air (in parts per million, i.e.ppm), the

data was collected for 30 localities in a certain city and is presented below :

| Concentration of SO <sub>2</sub> (in ppm) | Frequency |
|-------------------------------------------|-----------|
| 0.00 - 0.04                               | 4         |
| 0.04 - 0.08                               | 9         |
| 0.08 - 0.12                               | 9         |
| 0.12 - 0.16                               | 2         |
| 0.16 - 0.20                               | 4         |
| 0.20 - 0.24                               | 2         |

Find the mean concentration of  $\ensuremath{\mathsf{SO}_2}$  in the air.

## **Sol.** Let the assumed mean a = 0.10.

| Concentration<br>of SO <sub>2</sub><br>(in ppm) | Frequencyf<br>i | Mid value<br>x <sub>i</sub> | $u_i = \frac{x_i - 0.10}{0.04}$ | $f_i u_i$      |
|-------------------------------------------------|-----------------|-----------------------------|---------------------------------|----------------|
| 0.00 - 0.04                                     | 4               | 0.02                        | -2                              | -8             |
| 0.04 - 0.08                                     | 9               | 0.06                        | -1                              | -9             |
| 0.08 - 0.12                                     | 9               | 0.10                        | 0                               | 0              |
| 0.12 - 0.16                                     | 2               | 0.14                        | 1                               | 2              |
| 0.16 - 0.20                                     | 4               | 0.18                        | 2                               | 8              |
| 0.20 - 0.24                                     | 2               | 0.22                        | 3                               | 6              |
|                                                 | $\sum f_i = 30$ |                             |                                 | $\sum f_i u_i$ |
|                                                 |                 |                             |                                 | = -1           |

By step deviation method

Mean = a + 
$$\frac{\Sigma f_i u_i}{\Sigma f_i} \times h$$
  
= 0.10 +  $\frac{-1}{30} \times 0.04$   
= 0.10 - 0.0013  
= 0.0987  
= 0.099 ppm

### SOME IMPORTANT RESULTS ABOUT MEAN :

- 1. The algebraic sum of deviations taken about the mean is zero i.e.,  $\sum_{i=1}^{n} (x_i \bar{x}) = 0$
- 2. The value of the mean depends on all the observations.
- 3. The A.M. of two numbers a and b is  $\frac{a+b}{2}$

4. **Combined mean :** If and are the arithmetic means of two series with n<sub>1</sub> and

 $n_2$  observations respectively, then the combined mean is :

$$\overline{\mathbf{x}}_{c} = \frac{\mathbf{n}_{1}\overline{\mathbf{x}}_{1} + \mathbf{n}_{2}\overline{\mathbf{x}}_{2}}{\mathbf{n}_{1} + \mathbf{n}_{2}}$$



5. If is the mean of  $x_1, x_2, \dots, x_n$ , then the mean of  $x_1 + a, x_2 + a, x_3 + a, \dots, x_n + ais + a$ , for all values of a.

6. If is the mean of  $x_1, x_2, ..., x_n$ , then the mean of  $ax_1, ax_2, ..., ax_n$  is a and that of

$$\frac{x_1}{a}, \frac{x_2}{a}, \dots, \frac{x_n}{a} \xrightarrow{\overline{x}}_{is} a$$

7. The mean of the first n natural numbers is  $\left(\frac{n+1}{2}\right)$ 

8. The mean of the square of the first n natural numbers =  $\frac{(n+1)(2n+1)}{6}$ 

9. The mean of the cubes of the first n natural numbers =  $\frac{n(n+1)^2}{4}$ 

10. The mean cannot be calculated graphically.