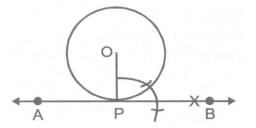
CONSTRUCTIONS

TO CONSTRUCT A TANGENT INTO A CIRCLE

CONSTRUCTION OF TANGENT TO A CIRCLE :

To Draw the Tangent to a Circle at a Given Point on it, When the Centre of the Circle is


Known :

- **Given :** A circle with centre O and a point P and it.
- **Required :** To draw the tangent to the circle at P.

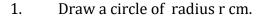
Steps of Construction.

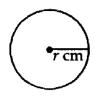
- (i) Join OP.
- (ii) Draw a line AB perpendicular to OP at the point P. APB is the required

tangent at P.

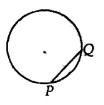
- **Ex. 1** Draw a circle of diameter 6 cm with centre O. Draw a diameter AOB. Through A or B draw tangent to the circle.
- **Sol. Given :** A circle with centre O and a point P on it.

Required : To draw tangent to the circle at B or A.

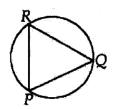

Steps of Construction.


(i) With 0 as centre and radius equal to 3 cm ($6 \div 2$) draw a circle.

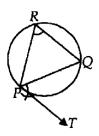
- (ii) Draw a diameter AOB.
- (iii) Draw CD \perp AB.
- (iv) So. CD is the required tangent.

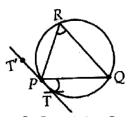

Construction of a Tangent to a Circle at a given point when its centre is not known :

Steps of construction :



2. Mark a point P on it. Draw any chord PQ.




3. Take a point R on the major arc QP. Join RP & RQ.

4. Construct $\angle QPT = \angle PRQ$.

5. Produce TP to T¢ such that T¢PT is the required tangent at P.

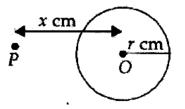
- Ex. 2 Draw a circle of radius 4.5 cm. Take a point P on it. Construct a tangent at the point P without using the centre of the circle. Write the steps of construction.
- **Sol.** Given : To draw a tangent to a circle at P.

Steps of Construction

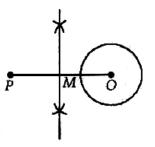
- (i) Draw a circle of radius = 4.5 cm.
- (ii) Draw a chord PQ, from the given point P on the circle.
- (iii) Take a point R on the circle and joint PR and QR.

P A B

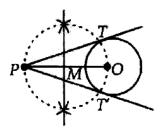
(iv) Draw $\angle QPB = \angle PRC$ on the opposite side of the chord PQ.


(v) Produce BP to A. Thus, APB is the required tangent.

Construction of Tangent to a Circle from a Point Outside it when the Centre of the Circle is known :


Steps of Construction :

1. Draw a circle with O as centre and radius r cm. Mark a point P outside the circle such

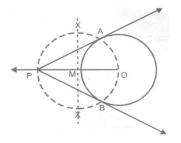

that OP = x cm.

2. Join OP and draw its perpendicular bisector, which cut OP at M.

3. Draw a circle with M as centre and radius equal to MP to intersect the given circle at the point T and T¢. Join PT and PT¢. PT and PT¢ are the required tangents.

- **Ex. 3** Draw a circle of radius 2.5 cm. From a point P, 6 cm apart from the centre of a circle, draw two tangents to the circle.
- **Sol. Given :** A point P is at a distance of 6 cm from the centre of a circle of

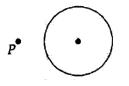
radius 2.5 cm

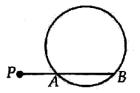

Required : To draw two tangents to the circle from the given point P.

Steps of Construction :

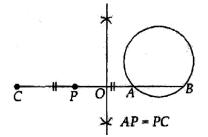
- (i) Draw a circle of radius 2.5 cm. Let it centre be 0.
- (ii) Join OP and bisect it. Let M be mid-point of OP.
- (iii) Taking M as centre and MO as radius draw a circle to intersect C in two points,

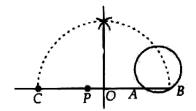
say A and B.

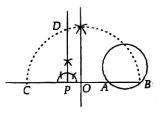

(iv) Join PA and PB. These are the required tangents from P to C.

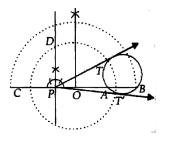

Construction of tangents to a circle from a point out side it without using the centre :

Step of Construction :


1. Draw a circle of radius r cm and a point P outside it.


2. Through P draw a secant PAB to intersect the circle at A and B.


Produce AP to C such that AP = PC. Draw the perpendicular bisector of CB which cuts CB at O.


4. Draw a semi circle with CB as diameter, O as centre and OC as radius.

5. Draw PD \perp CB, intersecting the semicircle at D.

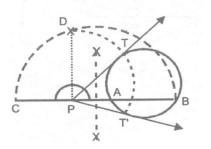
6. With P as centre PD as radius, draw arcs to intersect the circle at T and T¢.Join PT and PT¢. PT and PT¢ are the required tangents.

- **Ex. 4** Draw a circle of radius 3 cm. From a point P, outside the circle draw two tangents to the circle without using the centre of the circle.
- **Sol.** Given : A point P is outside the circle of radius 3 cm.

Required : To draw two tangents to the circle from the point P, without the use of

centre.

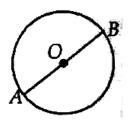
Steps of constructing


(i) Draw a circle of radius 3 cm.

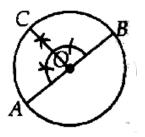
(ii) Take a point P outside the circle and draw a secant PAB, intersecting the circle at A and B.

- (iii) Produce AP to C such that AP = CP.
- (iv) Draw a semicircle, wit CB as a diameter.
- (v) Draw PD \perp AB, intersecting the semi-circle AT D.
- (vi) With PD as radius and P as centre draw two arcs to intersect the given circle at

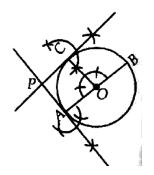
T and T'.


(vii) Joint PT and PT'. Which are the required tangents.

Construction of tangents to a circle inclined to each ohter at a given angle :


Steps of Construction :

1. Draw a circle with O as centre and radius r cm and any diameter AOB of this circle.



2. Construct the given angle at O such that radius OC meets the circle at C. (Suppose

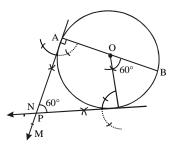
given angle is 90^o)

3. Draw perpendicular at A and C intersect each other at P.

Hence PA and PC are the required tangents to the given circle, inclined at a given angle.

- Ex. 5 Draw a circle of radius 3 cm. Draw a pair of tangents to this circle, which are inclined to each other at an angle of 60^o.
- Sol. Steps of construction

Step I : Draw a circle with 0 as centre and radius = 3 cm.


Step II : Draw any diameter AOB of this circle.

Step III : Construct $\angle BOC = 60^{\circ}$ such that radius OC meets the circle at C.

Step IV : Draw AM \perp AB and CN \perp OC.

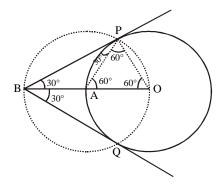
Let AM and CN intersect each other at P.

Then, PA and PC are the desired tangents to the given circle, inclined at an angle of 60°

- Ex. 6 Draw a pair of tangents to a circle of radius 5 cm which are inclined to each other an angle of 60°.
- **Sol.** In order to draw the pair of tangents, we follow the following steps.

Step I : Take a point 0 on the plane of the paper and draw a circle of radius

0A = 5 cm.


Step II : Produce OA to B such that OA = AB = 5 cm.

Step III : Taking A as the centre draw a circle of radius AO = AB = 5 cm. Suppose it

cuts the circle drawn in step I at P and Q.

Step IV : Join BP and BQ to get the desired tangents.

MATHS

- Justification: In OAP, we have
- OA = OP = 5 cm (= Radius) Also,
- AP = 5 cm (= Radius of circle with centre A)
- $\therefore \Delta OAP$ is equilateral.
- $\Rightarrow \angle PAO = 60^{\circ} \Rightarrow \angle BAP = 120^{\circ}$
- In \triangle BAP, we have
- $BA = AP and \angle BAP = 120^{\circ}$
- $\therefore \quad \angle ABP = \angle APB = 30^{\circ} \Rightarrow \angle PBQ = 60^{\circ}$