
Mechanical Properties of Fluids

 DEFINITION OF FLUID

The term fluid refers to a substance that can flow
and does not have a shape of its own. For example
liquid and gases.

Fluid includes property (A) Density (B) Viscosity
(C) Bulk modulus of elasticity (D) pressure (E)
specific gravity

 PRESSURE IN A FLUID

The pressure p is defined as the magnitude of the
normal force acting on a unit surface area.

P = 
A
F




F = normal force on a surface area A.

The pressure is a scalar quantity. This is because
hydrostatic pressure is transmitted equally in all
directions when force is applied, which shows that a
definite direction is not associated with pressure.

Thrust. The total force exerted by a liquid on any
surface in contact with it is called thrust of the liquid.

 CONSEQUENCES OF PRESSURE

(i) Railway tracks are laid on large sized wooden or

iron sleepers. This is because the weight (force) of

the train is spread over a large area of the sleeper.

This reduces the pressure acting on the ground and

hence prevents the yielding of ground under the

weight of the train.

(ii) A sharp knife is more effective in cutting the objects

than a blunt knife.

The pressure exerted = Force/area. The sharp knife

transmits force over a small area as compared to

the blunt knife. Hence the pressure exerted in case

of sharp knife is more than in case of blunt knife.

(iii) A camel walks easily on sand but a man cannot inspite

of the fact that a camel is much heavier than man.

This is because the area of camel’s feet is large as

compared to man’s feet. So the pressure exerted by

camel on the sand is very small as compared to the

pressure exerted by man. Due to large pressure, sand

under the feet of man yields and hence he cannot

walk easily on sand.
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 VARIATION OF PRESSURE WITH

 HEIGHT

Assumptions : (i) unaccelerated liquid (ii) uniform
density of liquid (iii) uniform gravity

Weight of the small element dh is balanced by the

excess pressure. It means dh
dp

 = g.

 
P

Pa

gdp 
h

0

dh

 P = P
a 
+ gh

 PASCAL’S LAW

if the pressure in a liquid is changed at a particular,
point the change is transmitted to the entire liquid
without being diminished in magnitude. In the above
case if P

a
 is increased by some amount than P must

increase to maintained the difference (P – P
a
) = hg.

This is Pascal’s Law which states that Hydraulic lift
is common application of Pascal’s Law.

1. Hydraulic press.

p = a
A
Wfor

A
W

a
f



as A >> a then f << W..

This can be used to lift a heavy load placed on the
platform of larger piston or to press the things placed
between the piston and the heavy platform. The
work done by applied force is equal to change in
potential energy of the weight in hydraulic press.

Ex.1. The area of cross-section of the two arms of a
hydraulic press are 1 cm2 and 10 cm2 respectively
(figure). A force of 5 N is applied on the water in the
thinner arm. What force should be applied on the
water in the thicker arms so that the water may remain
in equilibrium?

Sol. : In equilibrium, the pressures at the two surfaces
should be equal as they lie in the same horizontal
level. If the atmospheric pressure is P and a force F
is applied to maintain the equilibrium, the pressures
are

P
0
 + 2cm1

N5
 and P

0
 + 2cm10

F
 respectively..

This givens F = 50 N.

2. Hydraulic Brake.

Hydraulic brake system is used in auto-mobiles to
retard the motion.

 HYDROSTATIC PARADOX

Pressure is directly proportional to depth and by
applying pascal’s law it can be seen that pressure is
independent of the size and shape of the containing
vessel. (In all the three cases the heights are same).

P
A
 = P

B
 = P

C

 ATMOSPHERIC PRESSURE

Definition.

The atmospheric pressure at any point is numerically
equal to the weight of a column of air of unit
cross-sectional area extending from that point to the
top of the atmosphere.
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At 0ºC, density of mercury = 13.595 g cm–3, and at

sea level, g = 980.66 cm s–2

Now P = hg.

Atmospheric pressure = 76 × 13.595 × 980.66 dyne

cm–2 = 1.013 × 10–5 N-m2 (p
a
)

Height of Atmosphere

The standard atmospheric pressure is 1.013 × 105

Pa (N m–2). If the atmosphere of earth has a uniform

density  = 1.30 kg m–3, then the height h of the air

column which exerts the standard atmospheric

pressure is given by

 hg = 1.013 × 105

h = g
10013.1 5




 = 
8.913.1
10013.1 5




m = 7.95 × 103 m 

8 km.

In fact, density of air is not constant but decreases

with height. The density becomes half at about 6 km

high, th
4
1

 at about 12 km and so on. Therefore, we

can not draw a clear cut line above which there is no

atmosphere. Anyhow the atmosphere extends upto

1200 km. This limit is considered for all practical

purposes.

 MEASUREMENT OF ATMOSPHERIC

 PRESSURE

1. Mercury Barometer.

To measure the atmospheric pressure experimentally,

torricelli invented a mercury barometer in 1643.

p
a
 =hg

The pressure exerted by a mercury column of 1mm

high is called 1 Torr.

1 Torr = 1 mm of mercury column

2. Open tube Manometer

Open-tube manometer is used to measure the

pressure gauge. When equilibrium is reached, the

pressure at the bottom of left limb is equal to the

pressure at the bottom of right limb.

i.e. p + y
1
g = p

a
 + y

2
g

p – p
a
 = g (y

2
 – y

1
) = gy

p – p
a
 = g (y

2
 – y

1
) = gy

p = absolute pressure, p – p
a
 = gauge pressure.

Thus, knowing y and  (density of liquid), we can

measure the gauge pressure.

Ex.2. The manometer shown below is used to measure

the difference in water level between the two tanks.

Calculate this difference for the conditions indicated.

Sol. : p
a
 + h

1
g – 40

1
g + 40g = p

a
 + h

2
g

h
2
g – h

1
g = 40 g – 40 

1
g

as 
1
 = 0.9

(h
2
 – h

1
) g = 40g – 36g

h
2
 – h

1
 = 4 cm
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3. Water Barometer.

Let us suppose water is used in the barometer instead
of mercury.

hg = 1.013 × 105 or h = 
g
10013.1 5




The height of the water column in the tube will be
10.3 m. Such a long tube cannot be managed easily,
thus water barometer is not feasible.

Ex. 3. In a given U-tube (open at one-end) find out relation
between p and p

a
. Given d

2
 = 2 × 13.6 gm/cm3 d

1

= 13.6 gm/cm3

Sol. : Pressure in a liquid at same level is same i.e.
at A – A–,

pgxdygdp 12a 

In C.G.S.

p
a
 + 13.6 × 2 × 25 × g + 13.6 × 26 × g = p

p
a
 + 13.6 × g [50 + 26] = p

2p
a
 = p  [p

a
 = 13.6 × g × 76]

Ex. 4. Find out pressure at points A and B. Also find
angle ‘’.

Sol. : Pressure at A – P
A
 = P

atm
 – 

1
 gl sin 

Pressure at B P
B
 = P

atm
 + 

2
 gh 

But P
B
 is also equal to P

B
 = P

A
 + 

3
 gl sin 

Hence - P
atm

 + 
2
 gh = P

A
 + 

3
 gl

sin 

P
atm

 + 
2
 gh = P

atm
 – 

1

gl sin  + 
3
 gl sin 

sin  = )(
h

13

2




.

Ex. 5. In the given figure, the container slides down with
acceleration ‘a’ on an incline of angle ‘’. Liquid is
stationary with respect to container. Find out -

(i) Angle made by surface of liquid with horizontal plane.

(ii) Angle if a = g sin .

Sol. : Consider a fluid particle on surface. The forces
acting on it are shown in figure.

=     

Resultant force acting on liquid surface, will always
normal to it

tan  = 

sinmamg

cosma
 = )sinag(

cosa




Thus angle of liquid surface with the horizontal is

equal to  = tan–1
)sinag(

cosa




(ii) If a = g sin , then   = tan–1 













2singg

cosa

= tan–1



2cosg
cossing

 = tan–1 (tan )  = 
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Ex. 6. Water and liquid is filled up behind a square wall

of side . Find out

(a) Pressures  at A, B and C

(b) Forces in part AB and BC
(c) Total force and point of application of force.
(neglect atmosphere pressure in every calculation)

Sol. :

(a) As there is no liquid above ‘A’,

So pressure at A, p
A
 = 0

Pressure at B, p
B
 = gh

1

Pressure at C, p
C
 = gh

1
 + 2gh

2

(b) Force at A = 0

Take a strip of width ‘dx’ at a depth ‘x’ in part AB.

Pressure is equal to gx.

Force on strip = pressure × area

dF = gx dx

Total force upto B

F = 
1h

0

dxgx  = 
2
hgx 2
1

 = 
2

5510101000 

= 1.25 × 106 N

In part BC for force take a elementary strip of width
dx in portion BC. Pressure is equal to

=gh
1
 + 2g(x – h

1
)

Force on elementary strip = pressure × area

dF = [gh
1
 + 2g(x – h

1
)]  dx

Total force on part BC

F = dx)]hx(g2gh[
1h

11 


 

= 


1h

1

2

1 xh
2
xg2xgh


























= gh
1
h

2
 + 2g














 2
11

2
1

2
hh

2
h 

= gh
1
h

2
 + 

2
g2 

 [2 + h
1

2 – 2h
1
]

= gh
1
h

2
 +g ( – h

1
)2

= gh
2
 [h

1
 + h

2
] = gh

2
2

= 1000 × 10 × 5 × 10 × 10 = 5 × 106 N

(c) Total force  = 5 × 106 + 1.25 × 106  = 6.25 × 106 N

Taking torque about A

Total torque of force in AB=  xdF = 
1h

0

x.dxgx

= 
1h

0

3

3
xg











 
 = 

3
hg 3
1

 = 3
12510101000 

= 
3
1025.1 7

 N - m

Total torque of force in BC =  xdF

On solving we get = gh
1
h

2
[h

1
 + 

2
h2 ] + gh

2
2

[h
1
 + 3

h2 2 ]

= 1000 × 10 × 5 × 5 × 10 [5 + 2.5] + 1000 × 10 ×

25 × 10 [5 + 3
10

]

= 2.5 × 7.5 × 106 + 3
5.62

 × 106   = 3
75.118

 × 106

Total torque = 
3
10875.11 7

 + 
3
1025.1 7

= 
3
10125.13 7
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Total torque = total force × distance of point of
application of force from top = F . x

p

6.25 × 106 x
p
 = 

3
10125.13 7

x
p
 = 7m

Alternatively

We can solve this problem by pressure diagram also.

Force on ‘AB’ part is area of triangle ‘ABC’

F
AB

 = gh
1
 × 

2
h1  ×  = 

2
gh 22

1

Torque of force of AB part about A -


AB

 = 
3
h2

2
gh 1

2
1 

 

= 
24
g

3
gh 43

1  




Force on ‘BC’ part is area of trapezium -

F
BC

 = gh
1
h

2
 + 2gh

2
 × 

2
h2   = gh

1
h

2
 + gh

2
2

Torque of force of ‘BC’ part about ‘A’ -


BC

 = gh
1
h

2
  (h

1
 + 

2
h2 ) + gh

2
2(h

1
 + 3

h2 2 )

= 
4
g 3






 
42


 + g
4

3





 
32


= 
4
g 3





 

43
  = 

48
g19

4

Total force   = 
2
gh21

 + gh
1
h

2
 + gh

2
2

= 
8
g 3

 + g
4

3
+ 

4
g 3






 
2
111  =  

8
g5 3

Total torque   = 
48
g19 4

 + 
24
g 4

 = 
48
g21 4

But  F x
p
 = 

48
g21 4

 p
8
g5 3


 

 = 
48
g21 4

x
p
 = 30

21
 = 30

1021
 = 7 m

Thus total force is acting at 7m below A point.

 ARCHIMEDES’ PRINCIPLE

According to this principle, when a body is immersed
wholly or partially in a fluid, it loses its weight which
is equal to the weight of the fluid displaced by the
body.

Up thrust = buoyancy = Vg

V = volume submerged = density of liquid.

Relation between density of solid and liquid

weight of the floating solid = weight of the liquid
displaced

V
1


1
 g = V

2


2 
g    

1

2

2

1

V
V





or
Density of solid

Density of liquid

Volume of the immeresed portion of the solid

Total Volume of the solid


This relationship is valid in accelerating fluid also.
Thus, the force acting on the body are :

(i) its weight Mg which acts downward and

(ii) net upward thrust on the body or the buoyant force
(mg)

Hence the apparent weight of the body = Mg – mg
= weight of the body – weight of the displaced liquid.

Or Actual Weight of body – Apparent weight of
body = weight of the liquid displaced.

The point through which the upward thrust or the
buoyant force acts when the body is immersed in
the liquid is called its centre of buoyancy. This will
coincide with the centre of gravity if the solid body
is homogeneous. On the other hand if the body is
not homogeneous, then the centre of gravity may
not lie on the line of the upward thrust and hence
there may be a torque that causes rotation in the
body.

If the centre of gravity of the body and the centre of
buoyancy lie on the same straight line, the body is in
equilibrium.

If the centre of gravity of the body does not coincide
with the centre of buoyancy (i.e., the line of upthrust),
then torque acts on the body. This torque causes the
rotational motion of the body.
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Ex. 7. A copper piece of mass 10 g is suspended by a
vertical spring. The spring elongates 1 cm over its
natural length to keep the piece in equilibrium. A
beaker containing water is now placed below the
piece so as to immerse the piece completely in water.
Find the elongation of the spring. Density of copper
= 9000 kg/m3. Take g = 10 m/s2.

Sol. : Let the spring constant be k. When the piece is
hanging in air, the equilibrium condition gives

k (1 cm) = (0.01 kg) (10 m/s)

or k (1 cm) = 0.1 N. .............(i)

The volume of the copper piece

= 3m/kg9000
kg01.0

 = 9
1

 × 10–5 m3.

This is also the volume of water displaced when the
piece is immersed in water. The force of buoyancy

= weight of the liquid displaced

= 9
1

 × 10–5 m3 × (1000 kg/m3) × (10 m/s2) = 0.011 N.

If the elongation of the spring is x when the piece is
immersed in water, the equilibrium condition of the
piece gives,

kx = 0.1 N – 0.011 N = 0.089 N. ..............(ii)

By (i) and (ii),

x = 1.0
089.0

 cm   = 0.89 cm.

Ex. 8. A cubical block of wood of edge 3 cm floats in
water. The lower surface of the cube just touches
the free end of a vertical spring fixed at the bottom
of the pot. Find the maximum weight that can be put
on the block without wetting it. Density of wood
= 800 kg/m3 and spring constant of the spring = 50
N/m. Take g = 10 m/s2.

Sol. : The specific gravity of the block = 0.8. Hence the
height inside water = 3 cm × 0.8 = 2.4 cm. The
height outside ater = 3 cm – 2.4 = 0.6 cm. Suppose
the maximum weight that can be put without wetting
it is W. The block in this case is completely immersed
in the water. The volume of the displaced water

= volume of the block = 27 × 10–6 m3.

Hence, the force of buoyancy

= (27 × 10–6 m3) × 1(1000 kg/m3) × (10 m/s2)
 = 0.27 N.

The spring is compressed by 0.6 cm and hence the
upward force exerted by the spring

= 50 N/m × 0.6 cm = 0.3 N.

The force of buoyancy and the spring force taken
together balance the weight of the block plus the
weight W put on the block. The weight of the block is

W= (27 × 10–6 m) × (800 kg/m3) × (10 m/s2)
  = 0.22 N.

Thus, W = 0.27 N + 0.3 N – 0.22 N  = 0.35 N.

Ex. 9. A wooden plank of length 1 m and uniform cross-
section is hinged at one end to the bottom of a tank
as shown in figure. The tank is filled with water up to
a height of 0.5 m. The specific gravity of the plank is
0.5. Find the angle  that the plank makes with the
vertical in the equilibrium position. (Exclude the case
 = 0)

Sol. : The forces acting on the plank are shown in the
figure. The height of water level is
 = 0.5m. The length of the plank is 1.0 m = 2.
The weight of the plank acts through the centre B of
the plank. We have OB = . The buoyant force F
acts through the point A which is the middle point of
the dipped part OC of the plank.

We have OA = 
2
OC

 = cos2


.

Let the mass per unit length of the plank be .

Its weight mg = 2g.
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The mass of the part OC of the plank = 







cos


.

The mass of water displaced = 5.0
1

cos




= 



cos
2

.

The buoyant force F is, therefore, F = 



cos

g2
.

Now, for equilibrium, the torque of mg about O

should balance the torque of F about O.

So mg (OB) sin = F(OA) sin

or, (2) = 










cos
2









cos2


 or,, cos2= 

2
1

or, cos = 2
1

, or,  = 45°.

Ex. 10. A cylindrical block of wood of mass M is floating

in water with its axis vertical. It is depressed a little

and then released. Show that the motion of the block

is simple harmonic and find its frequency.

Sol. : Suppose a height h of the block is dipped in the

water in equilibrium position. If r be the radius of the

cylindrical block, the volume of the water diplaced

= r2h. For floating in equilibrium,

 r2 hg = W ..............(i)

where  is the density of water and W the weight of

the block.

Now suppose during the vertical motion, the block

is further dipped through a distance x at some instant.

The volume of the displaced water is  r2 (h + x).

The forces acting on the block are, the weight W

vertically downward and the buoyancy  r2(h + x)

g vertically upward.

Net force on the block at displacement x from the

equilibrium position is

F = W – r2 (h + x)g   = W – r2 hg – r2xg

Using (i) F = – r2 gx = – kx,

where k = r2 g.

Thus, the block executes SHM with frequency.

v = 
2
1

M
k

 = 
2
1

M
gr2 .

Ex. 11.  A cylindrical bucket with one end open is

observed to be floating on a water ( = 1000 kg/

m3) with open and down. It is of 10 N weight and is

supported by air that is trapped inside it as shown

below. The bucket floats with a height 10 cm above

the liquid surface. If the air trapped is assumed to

follow isothermal law, then determine the force F

necessary just to submerge the bucket. The internal

area of cross-section of bucket is 21 cm2. The

thickness of the wall is assumed to negligible and the

atmospheric pressure must be neglected.

(g = 10 m/sec2)

Sol. : Weight of bucket

W = Ax
1
g .....(1)

pressure at liquid - air interface = pressure of air

= g x
1

From (1) p
1
 =  gx

1
 = g gA

W
  = 

A
W

v
1
 = A[h + x

1
] = A 











gA

Wh

Let force F is applied

downward force = F + W = Buoyant = Ax
2
g....(2)

p
2
 = x

2 
g, v

2
 = Ax

2

p
1
v

1
 = p

2
v

2

A
W

 × A 










gA

Wh  = x
2
 g A x

2

 x
2
 = 











 gA

Wh
gA

W
 from (2)
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F + W = Ag 










 gA

Wh
gA

W

 F + W = 2WghWA 

F = WWghWA 2  substituting values -

W = 10 N,  = 1000 kg/m3 , A = 2.1 × 10–3 m2

F

= 1010010101000101.210 13  

  = 11 - 10 = 1N

Ex. 12.  A large block of ice cuboid of height ‘’ and
density 

ice
 = 0.9 

w
, has a large vertical hole along

its axis. This block is floating in a lake. Find out the
length of the rope required to raise a bucket of water
through the hole.

Sol. : Let area of ice-cuboid excluding hole = A

weight of ice block = weight of liquid displaced

A 
ice
 g = A 

w
 ( – h) g

10
9

 =  – h h =  – 10
9

 = 






10


 PRESSURE IN CASE OF ACCELERATING

 FLUID

(i) Liquid Placed in elevator :

When elevator accelerates upward with acceleration
a0 then pressure in the fluid, at depth ‘h’ may be
given by,

p = h [g + a0]

and force of buoyancy, B = m (g + a0)

(ii) Free surface of liquid in horizontal acceleration:

tan  = g
a0

p1 – p2 =  a0   where p1 and p2 are pressures at

point 1 & 2. Then h1 – h2 = g
a0

Ex. 13.  An open rectangular tank 1.5 m wide 2m deep
and 2m long is half filled with water. It is accelerated
horizontally at 3.27 m/sec2 in the direction of its
length. Determine the depth of water at each end of
tank.  [g = 9.81 m/sec2]

Sol. : tan  = g
a

 = 3
1

Depth at corner ‘A’

= 1 – 1.5 tan

= 0.5 m  Ans.

Depth at corner ‘B’ = 1 + 1.5 tan  = 1.5 m  Ans.

(iii) Free surface of liquid in case of rotating
cylinder.

h = g2
v2

 = g2
r22
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 STREAMLINE FLOW

The path taken by a particle in flowing fluid is called
its line of flow. In the case of steady flow all the
particles passing through a given point follow the
same path and hence we have a unique line of flow
passing through a given point which is also called
streamline.

 CHARACTERISTICS OF STREAMLINE

1. A tangent at any point on the stream line gives the
direction of the velocity of the fluid particle at that
point.

2. Two steamlines never intersect each other.

Laminar flow : If the liquid flows over a horizontal
surface in the form of layers of different velocities,
then the flow of liquid is called Laminar flow. The
particle of one layer do not go to another layer. In
general, Laminar flow is a streamline flow.

Turbulent Flow  : The flow of fluid in which velocity
of all particles crossing a given point is not same and
the motion of the fluid becomes disorderly or irregular
is called turbulent flow.

 REYNOLD’S NUMBER

According to Reynold, the critical velocity (vc) of a
liquid flowing through a long narrow tube is

(i) directly proportional to the coefficient of viscosity
() of the liquid.

(ii) inversely proportional to the density  of the liquid
and

(iii) inversely proportional to the diameter (D) of the tube.

That is  vc  D


   or    vc = D
R



or  = 
Dvc

...............(1)

where R is the Reynold number.

If R < 2000, the flow of liquid is streamline or laminar.
If R > 3000, the flow is turbulent. If R lies between
2000 and 3000, the flow is unstable and may change
from streamline flow to turbulent flow.

 EQUATION OF CONTINUITY

The equation of continuity expresses the law of
conservation of mass in fluid dynamics.

This is called equation of continuity and states that
as the area of cross section of the tube of flow
becomes larger, the liquid’s (fluid) speed becomes
smaller and vice-versa.

Illustrations -

(i) Velocity of liquid is greater in the narrow tube as
compared to the velocity of the liquid in a broader
tube.

(ii) Deep waters run slow can be explained from the
equation of continuity i.e., av = constant. Where water
is deep the area of cross section increases hence
velocity decreases.

 ENERGY OF A LIQUID

A liquid can posses three types of energies :

(i) Kinetic energy :

The energy possessed by a liquid due to its motion
is called kinetic energy. The kinetic energy of a liquid

of mass m moving with speed v is 
2
1

 mv2.

 K.E. per unit mass = 
m

mv
2
1 2

 = 2
1

v2.

(ii) Potential energy :

The potential energy of a liquid of mass m at a height
h is m g h.

 P.E. per unit mass = 
m
mgh

 = gh

(iii) Pressure energy :

The energy possessed by a liquid by virtue of its
pressure is called pressure energy.

Consider a vessel fitted with piston at one side
(figure). Let this vessel is filled with a liquid. Let ‘A’
be the area of cross section of the piston and P be
the pressure experienced by the liquid.

The force acting on the piston = PA

If dx be the distance moved by the piston, then work
done by the force = PA dx = PdV

where dV = Adx, volume of the liquid swept.
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This work done is equal to the pressure energy of
the liquid.

 Pressure energy of liquid in volume dV = PdV.

The mass of the liquid having volume dV = dV,

 is the density of the liquid.

 Pressure energy per unit mass of the liquid

= dV
PdV
  = 

P
.

 BERNOULLI’S THEOREM

It states that the sum of pressure energy, kinetic
energy and potential energy per unit mass or per
unit volume or per unit weight is always constant for
an ideal (i.e. incompressible and non-viscous) fluid
having stream-line flow.

i.e. 
P

 + 
2
1

 v2 + gh = constant.

Ex. 14.  A circular cylinder of height h
0
 = 10 cm and

radius r
0
 = 2cm is opened at the top and filled with

liquid. It is rotated about its vertical axis. Determine
the speed of rotation so that half the area of the
bottom gets exposed. (g = 10 m/sec2).

Sol. : Area of bottom = r
0
2

If r is radius of the exposed bottom, then

 r2 = 
2
1
r

0
2 r = 2

r0

Applying Bernoulli’s equation between points
(1) and (2) -

P
atm

 + 
2
1

v
1
2 – gH = P

atm
 + 

2
1

v
2

2 – g(H – h
0
)

– gh
0
 = 

2
1

(v
2

2 – v
1
2)      2gh

0
  = [v

1
2 – v

2
2]

= [w2r
0

2 – w2r2]

 r
0

= 2 × 10–2 m      2gh
0
   = w2 [r

0
2 – r2]

 w = 
0r
2

gh  = 2102
2

 1.010

= 100 radian / sec.

Ex. 15.  Water flows in a horizontal tube as shown in
figure. The pressure of water changes by 600 N/m2

between A and B where the areas of cross-section
are 30cm2 and 15cm2 respectively. Find the rate of
flow of water through the tube.

Sol : Let the velocity at A = v
A
 and that at B = v

B
.

By the equation of continuity, 
A

B
v
v

 = 2

2

cm15
cm30

 = 2.

By Bernoulli’s equation,

P
A
 + 

2
1
 v

A
2 = P

B
 + 

2
1

v
B

2

or, P
A
 – P

B
 = 

2
1

(2v
A
)2 – 

2
1

v
A

2 = 
2
3
v

A
2

or, 600 2m
N

 = 
2
3









3m
kg1000  v

A
2

or, v
A
 = 22 s/m4.0 = 0.63 m/s.

The rate of flow = (30 cm2) (0.63 m/s) = 1800 cm3/s.

 APPLICATION OF BERNOULLI’S

 THEOREM

(i) Bunsen burner

(ii) Lift of an airfoil.

(iii) Spinning of a ball (Magnus effect)

(iv) The sprayer.

(v) A ping-pong ball in an air jet

(vi) Torricelli’s theorem (speed of efflux)
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At point A, P1 = P, v1 = 0 and h1 = h

At point B, P2 = P, v2 = v (speed of efflux) and h = 0

Using Bernoulli’s theorem 

1P  + gh1 + 

2
1 2

1v  = 

2P

+ gh2 = 
2
1 2

2v , we have  
P

 + gh + 0 = 
P

 + 0 + 
2
1

v2 
2
1

v2 = gh   or   v = gh2

Ex. 16. A cylindrical container of cross-section area, A

is filled up with water upto height ‘h’. Water may

exit through a tap of cross section area ‘a’ in the

bottom of container. Find out

(a) Velocity of water just after opening of tap.

(b) The area of cross-section of water stream coming

out of  tape at depth h
0
 below tap in terms of ‘a’ just

after opening of tap.

(c) Time in which container becomes empty.

(Given : 02.0
A
a 2/1









, h = 20 cm, h

0
 = 20 cm )

Sol. : Applying Bernoulli’s equation between (1) and (2) -

P
a
 + gh + 

2
1
v

1
2 = P

a
 + 

2
1

v
2
2

Through continuity equation :

Av
1
 = av

2
, v

1
 = a
av2 gh + 

2
1
v

1
2 = 

2
1

v
2
2

on solving - v
2
 = 

2

2

A
a1

gh2

  = 2m/sec. ....(1)

(b) Applying Bernoulli’s equation between (2) and  (3)

2
1
v

2
2 + gh

0
 = 

2
1

v
3

2

Through continuity equation -

av
2
 = a’ v

3
  v

3
 = 'a

av2


2
1
v

2
2 + gh

0
  = 

2
1



2
2

'a
av












2
1

 × 2 × 2 + gh
0
 = 

2
1

2

'a
a








× 2 × 2

2

'a
a








 = 1 + 

2
20.8.9 


2

'a
a








 = 1.98

 a’ = 
98.1
a

(c) From (1) at any height ‘h’ of liquid level in container,
the velocity through tap,

v = 98.0
gh2

 = h20

we know, volume of liquid coming out of tap
= decrease in volume of liquid in container.

For any small time interval ‘dt’ av
2
dt = – A · dx

a x20  dt = – A dx  
t

0

dt  = – a
A 

0

h x20
dx

t = 20a
A 0

hx2  t = 20a
A

h2

= a
A

 × 2 × 20
h

= a
A2

20
20.0

= a
A2

 × 0.1

Given 
2/1

A
a








 = 0.02  or  a

A
 = 0004.0

1
 = 2500

Thus t = 2 × 2500 × 0.1 = 500 second.
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Ex. 17.

In a given arrangement

(a) Find out velocity of water coming out of ‘C’

(b) Find out pressure at A, B and C.

Sol. :

(a) Applying Bernoulli’s equation between liquid surface

and point ‘C’.

p
a
 + 2

1v2
1
  = p

a
 – gh

3
 + 2

2v2
1


through continuity equation

Av
1
 = av

2
 , v

1
 = 

A
av2  2

22

2
v

A
a

2
1
  = –gh

3
 + 2

2v2
1


2
2v  = 

2

2
3

A
a1

gh2


, v

2
 = 

2

2
3

A
a1

gh2



(b) Pressure at A just outside the tube , p
A
 = p

atm
 + gh

1

For pressure at B,

P
A
 + 0 + 0 = p

B 
+ gh

2
 +
2
1

v
B

2

P
B
 = P

A
 – gh

2
 – 
2
1




















 2

2
3

A
a1

gh2

Pressure at C, p
C 

= p
atm

(VII)  Venturimeter.

It is a gauge put on a flow pipe to measure the flow

of speed of a liquid (Fig). Let the liquid of density 

be flowing through a pipe of area of cross section

A
1
. Let A

2
 be the area of cross section at the throat

and a manometer is attached as shown in the figure.

Let v
1
 and P

1
 be the velocity of the flow and pressure

at point A, v
2
 and P

2
 be the corresponding quantities

at point B.

Using Bernoulli’s theorem :


1P  + gh

1
 + 
2
1 2

1v  = 
2P  + gh

2
 + 
2
1 2

2v , we get


1P

 + gh + 
2
1

v
1

2  = 
2P

 + gh + 
2
1 2

2v

(Since h
1
 = h

2
 = h)

or (P
1
 – P

2
) = 

2
1

( 2
2v  – v

1
2) ....(1)

According to continuity equation, A
1
 v

1
 = A

2
v

2

or 









2

1
2 A

Av  v
1

Substituting the value of v
2
 in equation (1) we have

(P
1
 – P

2
) = 

2
1
 





















 2
1

2
1

2

2

1 vv
A
A

2
1
 v

1
2























1

A
A

2

2

1

Since A
1
 > A

2
, therefore, P

1
 > P

2

or 2
1v  = 

























1
A
A

)PP(2
2

2

1

21
 = )AA(

)PP(A2
2
2

2
1

21
2
2




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where (P

1
 – P

2
) = 

m
 gh and h is the difference in

heights of the liquid levels in the two tubes.

1v  = 


























1
A
A

gh2
2

2

1

m

The flow rate (R) i.e., the volume of the liquid flowing
per second is given by R = v

1
 A

1
.

(viii) During wind storm,

The velocity of air just above the roof is large so
according to Bernoulli’s theorem, the pressure just
above the roof is less than pressure below the roof.
Due to this pressure difference an upward force acts
on the roof which is blown of without damaging other
parts of the house.

(ix) When a fast moving train cross a person standing
near a railway track, the person has a tendency to
fall towards the train. This is because a fast moving
train produces large velocity in air between person
and the train and hence pressure decreases
according to Bernoulli’s theorem. Thus the excess
pressure on the other side pushes the person towards
the train.

 VISCOSITY

When a solid body slides over another solid body,
a frictional-force begins to act between them. This
force opposes the relative motion of the bodies.
Similarly, when a layer of a liquid slides over another
layer of the same liquid, a frictional-force acts
between them which opposes the relative motion
between the layers. This force is called 'internal
frictional-force'.

Suppose a liquid is flowing in streamlined motion on
a fixed horizontal surface AB (Fig.). The layer of the
liquid which is in contact with the surface is at rest,
while the velocity of other layers increases with
distance from the fixed surface. In the Fig., the lengths
of the arrows represent the increasing velocity of
the layers. Thus there is a relative  motion between
adjacent layers of the liquid. Let us consider three
parallel layers a, b and c. Their velocities are in the
increasing order. The layer a tends to retard the layer

b, while b tends to retard c. Thus each layer tends
to decrease the velocity of the layer above it.
Similarly, each layer tends to increase the velocity of
the layer below it. This means that in between any
two layers of the liquid, internal tangential forces act
which try to destroy the relative motion between the
layers. These forces are called 'viscous forces'.
If the flow of the liquid is to be maintained, an external
force must be applied to overcome the dragging
viscous forces. In the absence of the external force,
the viscous forces would soon bring the liquid to
rest. The property of the liquid by virtue of which
it opposes the relative motion between its
adjacent layers is known as 'viscosity’.

The property of viscosity is seen in the following
examples :

(i) A stirred liquid, when left, comes to rest on account
of viscosity. Thicker liquids like honey, coaltar,
glycerine, etc. have a larger viscosity than thinner
ones like water. If we pour coaltar and water on a
table, the coaltar will stop soon while the water will
flow upto quite a large distance.

(ii) If we pour water and honey in separate funnels, water
comes out readily from the hole in the funnel while
honey takes enough time to do so. This is because
honey is much more viscous than water. As honey
tends to flow down under gravity, the relative motion
between its layers is opposed strongly.

(iii) We can walk fast in air, but not in water. The reason
is again viscosity which is very small for air but
comparatively much larger for water.

(iv) The cloud particles fall down very slowly because
of the viscosity of air and hence appear floating in
the sky.

Viscosity comes into play only when there is a relative
motion between the layers of the same material.
This is why it does not act in solids.
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FLOW OF LIQUID IN A TUBE :

 CRITICAL VELOCITY

When a liquid flows 'in a tube, the viscous forces

oppose the flow of the liquid, Hence a pressure

difference is applied between the ends of the tube

which maintains the flow of the liquid. If all particles

of the liquid passing through a particular point in the

tube move along the same path, the flow" of the liquid

is called 'stream-lined flow'. This occurs only when

the velocity of flow of the liquid is below a certain

limiting value called 'critical velocity'. When the

velocity of flow exceeds the critical velocity, the flow

is no longer stream-lined but becomes turbulent.

In this type of flow, the motion of the liquid becomes

zig-zag and eddy-currents are developed in it.

Reynold proved that the critical velocity for a liquid

flowing in a tube is v
c
 = k/a. where  is density

and  is viscosity of the liquid, a is radius of the tube

and k is 'Reynold's number' (whose value for a

narrow tube and for water is about 1000). When

the velocity of flow of the liquid is less than the critical

velocity, then the flow of the liquid is controlled by

the viscosity, the density having no effect on it. But

when the velocity of flow is larger than the critical

velocity, then the flow is mainly governed by the

density, the effect of viscosity becoming less

important. It is because of this reason that when a

volcano erupts, then the lava coming out of it flows

speedly inspite of being very thick (of large viscosity).

 VELOCITY GRADIENT AND

 COEFFICIENT OF VISCOSITY

The property of a liquid by virtue of which an

opposing force (internal friction) comes into play

when ever there is a relative motion between the

different layers of the liquid is called viscosity.

Consider a flow of a liquid over the horizontal solid

surface as shown in fig. Let us consider two layers

AB and CD moving with velocities v
 and v

 +

vd
 at a distance x and (x + dx) respectively from

the fixed solid surface.

According to Newton, the viscous drag or back

ward force (F) between these layers depends.

(i) directly proportional to the area (A) of the layer

and (ii) directly proportional to the velocity gradient









dx
dv

between the layers.

i.e.F  A dx
dv

  or   F = – A dx
dv

...(1)

 is called Coefficient of viscosity. Negative sign

shows that the direction of viscous drag (F) is just

opposite to the direction of the motion of the liquid.

 SIMILARITIES AND DIFFERENCES

 BETWEEN VISCOSITY AND SOLID

 FRICTION

Similarities

Viscosity and solid friction are similar as

1. Both oppose relative motion. Whereas viscosity

opposes the relative motion between two adjacent

liquid layers, solid friction opposes the relative motion

between two solid layers.

2. Both come into play, whenever there is relative

motion between layers of liquid or solid surfaces as

the case may be.

3. Both are due to molecular attractions.
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Differences between them 

 SOME APPLICATIONS OF VISCOSITY

Knowledge of viscosity of various liquids and gases
have been put to use in daily life. Some applications
of its knowledge are discussed as under 

1. As the viscosity of liquids vary with temperature,
proper choice of lubricant is made depending upon
season.

2. Liquids of high viscosity are used in shock absorbers
and buffers at railway stations.

3. The phenomenon of viscosity of air and liquid is used
to damp the motion of some instruments.

4. The knowledge of the coefficient of viscosity of
organic liquids is used in determining the molecular
weight and shape of the organic molecules.

5. It finds an important use in the circulation of blood
through arteries and veins of human body.

 UNITS OF COEFFICIENT OF VISCOSITY

From the above formula, we have

)z/v(A
F

x 


 dimensions of 

= ]TML[
]TL[
]MLT[

]L/LT][L[
]MLT[ 11

12

2

12

2












Its unit is kg/(meter-second)*

In C.G.S. system, the unit of coefficient of viscosity
is dyne s cm–2 and is called poise. In SI the unit of
coefficient of viscosity is N sm–2 and is called
decapoise.

1 decapoise = 1 N sm–2 = (105 dyne) × s × (102

cm)–2 = 10 dyne s cm–2 = 10 poise

Ex. 18.  A man is rowing a boat with a constant velocity
‘v

0
’ in a river the contact area of boat is ‘A’ and

coefficient of viscosity is . The depth of river is
‘D’. Find the force required to row the boat.

Sol. F – F
T
 = m a

res

As boat moves with constant velocity a
res

 = 0

F = F
T

But   F
T
 =  A dz

dv
 , but dz

dv
 = 

D
0v0   = 

D
v0

then F = F
T
 = 

D
Av0

Ex. 19.  A cubical block (of side 2m) of mass20 kg slides
on inclined plane lubricated with the oil of viscosity
 = 10–1 poise with constant velocity of 10 m/sec.
(g = 10 m/sec2)

find out the thickness of layer of liquid.

Sol. F = F =  A dz
dv

 = mg sin  dz
dv

 = 
h
v
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20 × 10 × sin 30° =  × 4 × 
h

10

h = 
100

1040 2
 –  [ = 10–1 poise = 10–2 N-sec-m–2 ]

= 4 × 10–3 m = 4 mm

Ex. 20.  As per the shown figure the central solid cylinder

starts with initial angular velocity 
0
. Find out the

time after which the angular velocity becomes half.

Sol. F =  A dz
dv

 , where dz
dv

= 
12

1

RR
0R




F = 
12

11

RR
RR2


 

 and  = FR
1
 = 

12

3
1

RR
R2


 

 = 
12

3
1

RR
R2


 


2
MR2

1 






 


dt
d

 = 
12

3
1

RR
R2


 

or  – 






20

0

d
 = )RR(m

R4

12

1


  

t

0

dt

t = 
1

12

R4
2n)RR(m







 EFFECT OF TEMPERATURE ON

 THE VISCOSITY

The viscosity of liquids decrease with increase in

temperature and increase with the decrease in

temperature. That is, 
T
1 . On the other hand,

the value of viscosity of gases increases with the

increase in temperature and vice-versa. That is, 

 T .

 STOKE’S LAW

Stokes proved that the viscous drag (F) on a
spherical body of radius r moving with velocity v in
a fluid of viscosity  is given by F = 6 r v.  This is
called Stokes’ law.

 TERMINAL VELOCITY

When a body is dropped in a viscous fluid, it is first
accelerated and then its acceleration becomes zero
and it attains a constant velocity called terminal
velocity.

Calculation of Terminal Velocity

Let us consider a small ball, whose radius is r and
density is , falling freely in a liquid (or gas), whose
density is  and coefficient of viscosity . When it
attains a terminal velocity v. It is subjected to two
forces :

(i) effective force acting downward

= V (–) g = 3
4

r3 ( – )g,

(ii) viscous force acting upward = 6    rv..

Since the ball is moving with a constant velocity v
i.e., there is no acceleration in it, the net force acting
on it must be zero. That is

6 rv = 3
4

 p r3 ( – ) g

or         v = 9
2


 g)(r2

Thus, terminal velocity of the ball is directly
proportional to the square of its radius

Important point

Air bubble in water always goes up. It is because
density of air () is less than the density of water ().
So the terminal velocity for air bubble is Negative,
which implies that the air bubble will go up. Positive
terminal velocity means the body will fall down.
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Ex. 21.  A spherical ball is moving with terminal velocity
inside a liquid. Determine the relationship of rate of
heat loss with the radius of ball.

Sol. Rate of heat loss = power = F × v  = 6   r v × v

= 6   r v2  = 6p  r 

2
0

2 )(gr
9
2














 

Rate of heat loss  r5

Ex. 22.  A drop of water of radius 0.0015 mm is falling
in air. If the coefficient of viscosity of air is
1.8 × 10–5 kg /(m-s), what will be the  terminal velocity
of the drop? (density of water = 1.0 × 103 kg/m2

and g = 9.8 N/kg.) Density of air can be neglected.

Sol. By Stoke’s law , the terminal velocity of a water
drop of radius r is given by

 = 9
2


 g)(r2

where  is the density of water,  is the density of air
and  the coefficient of viscosity of air. Here  is
negligible  and r = 0.0015 mm = 1.5 × 10–3 mm
= 1.5 × 10–6 m. Substituting the values  :

 = 9
2

 × 5

326

108.1
8.9)100.1()105.1(








= 2.72 × 10–4 m/s

Ex. 23.  A metallic sphere of radius 1.0 × 10–3 m and
density 1.0 × 104 kg/m3 enters a tank of water, after
a free fall through a distance of h in the earth’s
gravitational field. If its velocity remains unchanged
after entering water, determine the value of h. Given:
coefficient of viscosity of water = 1.0 × 10–3 N-s/
m2, g = 10 m/s2 and density of water = 1.0 × 103

kg/m3.

Sol. The velocity attained by the sphere in falling freely
from a height h is

 =  hg2 ....(i)

This is the terminal velocity of the sphere in water.
Hence by Stoke’s law, we have

 = 9
2


 g)(r2

where r is the radius of the sphere,  is the density of
the material of the sphere

 (= 1.0 × 103 kg/m3) is the density of water and  is
coefficient of viscosity of water.

  = 3

3423

100.19
10)100.1100.1()100.1(2









= 20 m/s

from equation (i), we  have  h = 102
2020

g2

2







 = 20 m

Applications of Stokes' Formula

(i) In determining the Electronic Charge by
Millikan's Experiment : Stokes' formula is used
in Millikan's method for determining the electronic
charge. In this method the formula is applied for
finding out the radii of small oil-drops by measuring
their terminal velocity in air.

(ii) Velocity of Rain Drops : Rain drops are formed
by the condensation of water vapour on dust
particles. When they fall under gravity, their motion
is opposed by the viscous drag in air. As the velocity
of their fall increases, the viscous drag also increases
and finally becomes equal to the effective force of
gravity. The drops then attain a (constant) terminal
velocity which is directly proportional to the square
of the radius of the drops. In the beginning the
raindrops are very small in size and so they fall with
such a small velocity that they appear floating in the
sky as cloud. As they grow in size by further
condensation, then they reach the earth with
appreciable velocity,

(iii) Parachute : When a soldier with a parachute jumps
from a flying aeroplane, he descends very slowly in
air.

In the beginning the soldier falls with gravity
acceleration g, but soon the acceleration goes on
decreasing rapidly until in parachute is fully opened.
Therefore, in the beginning the speed of the falling
soldier increases somewhat rapidly but then very
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slowly. Due to the viscosity of air the acceleration of
the soldier becomes ultimately zero and the soldier
then falls with a constant terminal speed. In Fig graph
is shown between the speed of the falling soldier
and time.

EXPLANATION OF SOME OBSERVED

  PHENOMENA

1. Lead balls are spherical in shape.

2. Rain drops and a globule of mercury placed on glass
plate are spherical.

3. Hair of a shaving brush/painting brush, when dipped
in water spread out, but as soon as it is taken out.
Its hair stick together.

4. A greased needle placed gently on the free surface
of water in a beaker does not sink.

5. Similarly, insects can walk on the free surface of
water without drowning.

6. Bits of Camphor gum move irregularly when placed
on water surface.

 SURFACE TENSION

Surface Tension is a property of liquid at rest by
virtue of which a liquid surface gets contracted to a
minimum area and behaves like a stretched
membrane.

Surface Tension of a liquid is measured by force per
unit length on either side of any imaginary line drawn
tangentially over the liquid surface, force being
normal to the imaginary line as shown in the figure.

i.e. Surface tension

(T) = 
)(linetheofLength

)F(lineimginarytheofeitheronforceTotal


Units of Surface Tension.

In C.G.S. system the unit of surface tension is dyne/
cm (dyne cm-1) and Sl system its units is Nm-1

Ex. 24.  A ring is cut form a platinum tube of 8.5 cm
internal and 8.7 cm external diameter. It is supported
horizontally from a pan of a balance so that it comes
in contact with the water in a glass vessel. What is
the surface tension of water if an extra 3.97 g weight
is required to pull it away from water? (g = 980 cm/
s2).

Sol.

The ring is in contact with water along its inner and
outer circumference; so when pulled out the total
force on it due to surface tension will be

F = T (2 r
1
 + 2 r

2
)

So, T = )rr(2
mg

21  [   F = mg]

i.e., T = )7.85.8(14.3
98097.3



 = 72.13 dyne/cm

 EXCESS PRESSURE INSIDE A LIQUID

 DROP AND A BUBBLE

1. Inside a bubble : Consider a soap bubble of radius r.

Let p be the pressure inside the bubble and p
a
 outside.

The excess pressure = p – p
a
. Imagine the bubble

broken into two halves, and consider one half of it
as shown in Fig. Since there are two surfaces, inner
and outer, so the force due to surface tension is

F = surface tension x length = T x 2 (circumference
of the bubble) = T x 2 (2 T r)   ... (1)
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The excess pressure (p - p
a
) acts on a cross-sectional

area  r2, so the force due to excess pressure is

 F = (p – p
a
) r2 .......... (2)

The surface tension force given by equation (1) must

balance the force due to excess pressure given by

equation (2) to maintain the equilibrium. i.e.(p – p
a
)

r2 = T × 2 (2 r)     or (p – p
a
) = 

r
T4

 = p
excess

above expression can also be obtained by equation of

excess pressure of curve surface by putting R
1
 = R

2
.

2. Inside the drop :  In a drop, there is only one surface

and hence excess pressure can be written as

(p – p
a
) = 

r
T2

= p
excess

3. Inside air bubble in a liquid : (p – p
a
) = 

r
T2

= p
excess

4. A charged bubble : If bubble is charged, it's radius

increases.

Bubble has pressure excess due to charge too.

Initially pressure inside the bubble  = p
a
 + 

1r
T4

For charge bubble, pressure inside = p
a
 + 

2r
T4

 –

0

2

2 


, where  surface is surface charge density..

Taking temperature remains constant, then from

Boyle's law











1
a r

T4p
3
4

r
1
3 = 

















0

2

2
a 2r

T4p
3
4

r
2

3

From above expression the radius of charged drop

may be calculated. It can conclude that radius of

charged bubble increases, i.e. r
2
 > r

1

Ex. 25.  A minute spherical air bubble is rising slowly
through a column of mercury contained in a deep
jar. If the radius of the bubble at a depth of 100 cm
is 0.1 mm, calculate its depth where its radius is
0.126 mm, given that the surface tension of mercury
is 567 dyne/cm. Assume that the atmospheric
pressure is 76 cm of mercury.

Sol. The total pressure inside the bubble at depth h
1
 is

(P is atmospheric pressure)

=  (P + h
1
g) + 

1r
T2

 = P
1

and the total pressure inside the bubble at depth h
2

is = (P + h
2
g) + 

2r
T2

 = P
2

Now, according to Boyle’s Law

P
1
V

1
 = P

2
V

2
    where V

1
= 3

4
 r

1
3 ,

and   V
2
 = 3

4
r

2
3

Hence we get 









1
1 r

T2)ghP(
3
4

 r
1
3

= 









2
2 r

T2)ghP(
3
4

 r
2
3

or,  









1
1 r

T2)ghP( r
1

3 = 









2
2 r

T2)ghP( r
2
3

Given that : h
1
 = 100 cm, r

1
 = 0.1 mm = 0.01 cm, r

2

= 0.126 mm = 0.0126 cm, T = 567 dyne/cm,
P = 76 cm of mercury. Substituting all the values,
we get h

2
 = 9.48 cm.

 THE FORCE OF COHESION

The force of attraction between the molecules of the
same substance is called cohesion.

In case of solids, the force of cohesion is very large
and due to this solids have definite shape and size.
On the other hand, the force of cohesion in case of
liquids is weaker than that of solids. Hence liquids
do not have definite shape but have definite volume.
The force of cohesion is negligible in case of gases.
Because of this fact, gases have neither fixed shape
nor volume.
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Examples.

(i) Two drops of a liquid coalesce into one when brought
in mutual contact because of the cohesive force.

(ii) It is difficult to separate two sticky plates of glass
wetted with water because a large force has to be
applied against the cohesive force between the
molecules of water.

(iii) It is very difficult to break a drop of mercury into
small droplets because of large cohesive force
between mercury molecules.

 FORCE OF ADHESION

The force of attraction between molecules of different
substances is called adhesion.

Examples.

(i) Adhesive force enables us to write on the black
board with a chalk.

(ii) Adhesive force helps us to write on the paper with
ink.

(iii) Large force of adhesion between cement and bricks
helps us in construction work.

(iv) Due to force of adhesive, water wets the glass plate.

(v) Fevicol and gum are used in gluing two surfaces
together because of adhesive force.

 ANGLE OF CONTACT

The angle which the tangent to the liquid surface at
the point of contact makes with the solid surface
inside the liquid is called angle of contact. Those
liquids which wet the walls of the container (say in
case of water and glass) have meniscus concave
upwards and their value of angle of contact is less
than 90° (also called acute angle). However, those

liquids which don't wet the walls of the container
(say in case of mercury and glass) have meniscus
convex upwards and their value of angle of contact
is greater than 90° (also called obtuse angle).
The angle of contact of mercury with glass about
140°, whereas the angle of contact of water with
glass is about 8°. But, for pure water, the angle of
contact with glass is taken as 0°.

 SHAPE OF LIQUID MENISCUS

When a capillary tube or a tube is dipped in a liquid,
the liquid surface becomes curved near the point of
contact. This curved surface is due to the two forces
i.e.

(i) due to the force of cohesion and

(ii) due to the force of adhesion. The curved surface of
the liquid is called meniscus of the liquid. Various
forces acting on molecule A are:

(iii) Force F
1
 due to force of adhesion which acts

outwards at right angle to the wall of the tube. This
force is represented by AB.

(iv) Force F
2
 due to force of cohesion which acts at an

angle of 45° to the vertical. This force is represented
by AD.

(v) The weight of the molecule A which acts vertically
downward along the wall of the tube.

Since the weight of the molecule is negligible as
compared to F

1
 and F

2
 and hence can be

neglected. Thus, there are only two forces (F
1
 and

F
2
) acting on the liquid molecules. These forces are

inclined at an angle of 135°.

                      (a)   (b)

                                        (c)
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The resultant force represented by AC will depend
upon the values of F

1
 and F

2
. Let the resultant force

makes an angle  with F
1
.

According to parallelogram law of vectors tan 

= º135cosFF
º135sinF

21

2

  = 2/FF
2/F

21

2


= 

21

2

FF2
F


Special cases :

(i) If F
2
 = 2 F

1
,  then tan  =  90°

Then the resultant force will act vertically downward
and hence the meniscus will be plane or horizontal
shown in figure (a). Example; pure water contained
in silver capillary tube.

(ii) If F
2
 < 2  F

1
, then tan  is positive   is acute

angle

Thus, the resultant will be directed outside the liquid
and hence the meniscus will be concave upward
shown in figure (b). This is possible in case of liquids
which wet the walls of the capillary tube. Example ;
water in glass capillary tube.

(iii) If F
2
 > 2  F

1
, then tan  is negative   is obtuse

angle.

Thus, the resultant will be directed inside the liquid
and hence the meniscus will be convex upward
shown in figure (c). This is possible in case of liquids
which do not wet the walls of the capillary tube.
Example ; mercury in glass capillary tube.

RELATION BETWEEN SURFACE TENSION,

 RADII OF CURVATURE AND EXCESS

 PRESSURE ON A CURVED SURFACE.

Let us consider a small element ABCD (fig.) of a
curved liquid surface which is convex on the upper
side. R

1
 and R

2
 are  the maximum and minimum radii

of curvature respectively, They are called the
'principal radii of curvature' of the surface. Let p be
the excess pressure on the concave side.

then p = T 









21 R
1

R
1

. If instead of a liquid surface,

we have a liquid film, the above expression will be

p = 2T 









21 R
1

R
1

, because a film has two surface.

 EXCESS OF PRESSURE INSIDE

 A CURVED SURFACE

1. Plane Surface :  If the surface of the liquid is plane
[as shown in Fig.(a)], the molecule on the liquid
surface is attracted equally in all directions. The
resultant force due to surface tension is zero. The
pressure, therefore, on the liquid surface is normal.

2. Concave Surface :  If the surface is concave
upwards [as shown in Fig.(b)], there will be upward
resultant force due to surface tension acting on the
molecule. Since the molecule on the surface is in
equilibrium, there must be an excess of pressure on
the concave side in the downward direction to
balance the resultant force of surface tension  p

A
 –

p
B
 = 

r
T2

.
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3. Convex Surface : If the surface is convex [as shown

in Fig.(c)], the resultant force due to surface tension

acts in the downward direction. Since the molecule

on the surface are in equilibrium, there must be an

excess of pressure on the concave side of the surface

acting in the upward direction to balance the

downward resultant force of surface tension, Hence

there is always an excess of pressure on concave

side of a curved surface over that on the convex

side.

p
B
 – p

A
 = 

r
T2

Ex. 26.  A barometer contains two uniform capillaries of

radii 1.44 × 10–3 m and 7.2 × 10–4 m. If the height

of the liquid in the narrow tube is 0.2 m more than

that in the wide tube, calculate the true pressure

difference. Density of liquid = 103 kg/m3, surface

tension = 72 × 10–3 N/m and g = 9.8 m/s2.

Sol. Let the pressure in the wide and narrow capillaries

of radii r
1
 and r

2
 respectively be P

1
 and P

2
.

Then pressure just below the mensiscus in the wide

and narrow tubes respectively are











1
1 r

T2P  and 









2
2 r

T2P [excess pressure = 
r
T2

].

Difference in these pressures

= 









1
1 r

T2P  – 









2
2 r

T2P  = hg

 True pressure difference = P
1
 – P

2

= hg + 2T 









21 r
1

r
1

= 0.2 × 103 × 9.8 + 2 × 72 × 10–3










  43 102.7

1
1044.1

1

= 1.86 × 103 = 1860 N/m2

CAPILLARITY

A glass tube of very fine bore throughout the length

of the tube is called capillary tube. If the capillary

tube is dipped in water, the water wets the inner

side of the tube and rises in it [shown in figure (a)].

If the same capillary tube is dipped in the mercury,

then the mercury is depressed [shown in figure (b)].

The phenomenon of rise or fall of liquids in a capillary

tube is called capillarity.

 PRACTICAL APPLICATIONS OF

 CAPILLARITY

1. The oil in a lamp rises in the wick by capillary action.

2. The tip of nib of a pen is split up, to make a narrow

capillary so that the ink rises upto the tin or nib

continuously.

3. Sap and water rise upto the top of the leaves of the

tree by capillary action.

4. If one end of the towel dips into a bucket of water

and the Other end hangs over the bucket the towel

soon becomes wet throughout due to capillary

action.

5. Ink is absorbed by the blotter due to capillary action.

6. Sandy soil is more dry than clay. It is because the

capillaries between sand particles are not so fine as

to draw the water up by capillaries.

7. The moisture rises in the capillaries of soil to the

surface, where it evaporates. To preserve the

moisture m the soil, capillaries must be. broken up.

This is done by ploughing and leveling the fields

8. Bricks are porous and behave like capillaries.
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 CAPILLARY RISE (HEIGHT OF

 A LIQUID IN A CAPILLARY TUBE)

 ASCENT FORMULA

Consider the liquid which wets the walls of the tube,
forms a concave meniscus shown in figure. Consider
a capillary tube of radius r dipped in a liquid of surface
tension T and density p. Let h be the height through
which the liquid rises in the tube. Let p be the pressure
on the concave side of the meniscus and p

a
 be the

pressure on the convex side of the meniscus. The
excess pressure

(p – p
a
) is given by (p – p

a
) = 

R
T2

Where R is the radius of the meniscus. Due to this
excess pressure, the liquid will rise in the capillary
tube till it becomes equal to the hydrostatic pressure
hpg. Thus in equilibrium state.

Excess pressure = Hydrostatic pressure or
R
T2

= hpg

Let  be the angle of contact and r be the radius of
the capillary tube shown in the fig.

From OAC,  
OA
OC

 = cos   or R = 
cos

r

 h =
gr

cosT2




This expression is called Ascent formula.

Discussion.

(i) For liquids which wet the glass tube or capillary tube,
angle of contact  < 90°. Hence  cos  = positive.
  h = positive. It means that these liquids rise in the
capillary tube.

Hence, the liquids which wet capillary tube rise
in the capillary tube. For example, water, milk,
kerosene oil, patrol etc.

Ex. 27.  A liquid of specific gravity 1.5 is observed to
rise 3.0 cm in a capillary tube of diameter 0.50 mm
and the liquid wets the surface of the tube. Calculate
the excess pressure inside a spherical bubble of 1.0
cm diameter blown from the same liquid. Angle of
contact = 0º.

Sol. The surface tension of the liquid is

T = 
2

grh

= 
2

)sec/cm980()cm/gm5.1()cm0.3()cm025.0( 23

= 55 dyne/cm.

Hence excess pressure inside a spherical bubble

p = 
R
T4

 = )cm5.0(
cm/dyne554

 = 440 dyne/cm2 .

(ii) For liquids which do not wet the glass tube or
capillary tube, angle of contact  > 90°.

Hence  cos  = negative h = negative. Hence, the
liquids which do not wet capillary tube are depressed
in the capillary tube. For example, mercury.

(iii) T, ,  and g are constant and hence   h  
r
1

.

Thus, the liquid rises more in a narrow tube and less
in a wider tube. This is called Jurin's Law.

(iv) If two parallel plates with the spacing 'd' are placed
in water reservoir, then height of rise

2T  = hdg

h  = dg
T2


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(v) If two concentric tubes of radius 'r

1
' and 'r

2
' (inner

one is solid) are placed in water reservoir,  then height

of rise

 T [2r
1 
 + 2r

2
] = [r2

2
 h – r

1
2h] g

h = g)rr(
T2

12 

(vi) If weight of the liquid in the meniscus is to be consider:

T cos × 2r = [r2h + 
3
1
r2 × r] g









3
rh  = gr

cosT2




(vii) When capillary tube (radius, 'r') is in vertical position,

the upper meniscus is concave and pressure due to

surface tension is directed vertically upward and is

given by p
1
 = 2T/R

1
 where  R

1
 = radius of curvature

of upper meniscus.

The hydrostatic pressure p
2
 = h g is always directed

downwards.

If p
1
 > p

2
 i.e. resulting pressure is directed upward.

For equilibrium, the pressure due to lower meniscus

should be downward. This makes lower meniscus

concave downward (fig.a). The radius of lower

meniscus R
2
 can be given by 

2R
T2

 = (p
1
 – p

2
).

If p
1
 < p

2
, i.e. resulting pressure is directed

downward for equilibrium, the pressure due to lower
meniscus should be upward. This makes lower
meniscus convex upward (fig. b).

The radius of lower meniscus can be given by 
2R
T2

= p
2
 – p

1
.

If p
1
 = p

2
, then is no resulting pressure. then, p

1
 – p

2

= 
2R
T2

 = 0 or, R
2
 =  i. e. lower surface will be

FLAT. (fig.c).
(viii) Liquid between two Plates  - When a small drop

of water is placed  between two glass plates put
face to face, it forms a thin film which is concave
outward along its boundary. Let 'R' and 'r' be the
radii of curvature of the enclosed film in two
perpendicular directions.

Hence the pressure inside the film is less than the
atmospheric pressure outside it by an amount p given

by  p = T 










R

1

r

1
 and we have. p  = 

r
T

.

If d be the distance between the two plates and 
the angle of contact for water and glass, then, from

the figure, cos  = 
r

d
2
1

  or   
r
1

 = 
d

cos2 
.

Substituting for 
r
1

  in , we get  p = 
d
T2

 cos .

 can be taken zero for water and glass, i.e. cos  =1.
Thus the upper plate is pressed downward by the

atmospheric pressure minus 
d
T2

. Hence the resultant

downward pressure acting on the upper plate is 
d
T2

.

If A  be the area of the plate wetted by the film, the
resultant force F pressing the upper plate downward

is given by F = resultant pressure × area  = 
d
TA2

.

For very nearly plane surface, d will be very small
and hence the pressing force F very large. Therefore
it will be difficult to separate the two plates normally.
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Ex. 28. A drop of water volume 0.05 cm3 is pressed
between two glass-plates, as a consequence of
which, it spreads and occupies an area of 40 cm2. If
the surface tension of water is 70 dyne/cm, find the
normal force required to seperate out the two glass
plates in newton.

Sol. Pressure inside the film is less than outside by an

amount, P = 









21 r
1

r
1T , where r

1
 and r

2
 are the radii

of curvature of the meniscus. Here r
1
 = t/2 and r

2

= , then the force required to separate the two
glass-plates, between which a liquid film is enclosed

(figure) is, F = P × A = t
AT2

, where t is the thickness

of the film, A = area of film.

F = 
V

TA2
At

TA2 22
 = 6

324

1005.0
)1070()1040(2









= 45 N

Ex. 29.  A glass plate of length 10 cm, breadth 1.54 cm
and thickness 0.20 cm weighs 8.2 gm in air. It is
held vertically with the long side horizontal and the
lower half under water. Find the apparent weight of
the plate. Surface tension of water = 73 dyne per
cm, g = 980 cm/sec2.

Sol. Volume of the portion of the plate immersed in water is

10 × 
2
1

(1.54) × 0.2 = 1.54 cm3.

Therefore, if the density of water is taken as 1,
then upthrust

= wt. of the water displaced

= 1.54 × 1 × 980 = 1509.2 dynes.

Now, the total length of the plate in contact with the
water surface is 2(10 + 0.2) = 20.4 cm,

 downward pull upon the plate due to surface
tension

= 20.4 × 73 = 1489.2 dynes

 resultant upthrust = 1509.2 – 1489.2

= 20.0 dynes = 980
20

=  = 0.0204 gm-wt.

 apparent weight of the plate in water

= weight of the plate in air – resultant upthrust

= 8.2 – 0.0204 = 8.1796 gm Ans.

Ex. 30.  A glass tube of circular cross-section is closed

at one end. This end is weighted and the tube floats

vertically in water, heavy end down. How far below

the water surface is the end of the tube? Given :

Outer radius of the tube 0.14 cm, mass of weighted

tube 0.2 gm, surface tension of water 73 dyne/cm

and g = 980cm/sec2.

Sol. Let  be the length of the tube inside water.

The forces acting on the tube are :

(i) Upthrust of water acting upward

= r2 × 1 × 980 = 
7
22

 × (0.14)2  × 980

= 60.368  dyne.

(ii) Weight of the system acting downward

= mg = 0.2 × 980 = 196 dyne.

(iii) Force of surface tension acting downward

= 2rT = 2 × 
7
22

 × 0.14 × 73 = 64.24 dyne.

Since the tube is in equilibrium, the upward force is

balanced by the downward forces. That is,

60.368  = 196 + 64.24 = 260.24.

  = 368.60
24.260

= 4.31 cm.

Ex. 31.  A glass U-tube is such that the diameter of one

limb is 3.0 mm and that of the other is 6.00 mm. The

tube is inverted vertically with the open ends below

the surface of water in a beaker. What is the difference

between the heights to which water rises in the two

limbs? Surface tension of water is 0.07 nm–1. Assume

that the angle of contact between water and glass is

0º.
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Sol. Suppose pressures at the points A, B, C and D be

P
A
, P

B
, P

C
 and P

D
 respectively.

The pressure on the concave side of the liquid surface
is greater than that on the other side by 2T/R.

An angle of contact  is given to be 0º, hence
R cos 0º = r or R = r

 P
A
 = P

B
 + 2T/r

1
 and  P

C
 = P

D
 + 2T/r

2

where r
1
 and r

2
 are the radii of the two limbs

But  P
A
 = P

C

 P
B
 + 

1r
T2

= P
D
 + 

2r
T2

or P
D
 – P

B
 = 2T 










21 r
1

r
1

where h is the difference in water levels in the two
limbs

Now, h = g
T2

 









21 r
1

r
1

Given that T = 0.07 Nm–1 ,  = 1000 kgm–3

r
1
 = 

2
3

 mm = 20
3

 cm = 10020
3


 m = 1.5 × 10–3 m,

r
2
 = 3 × 10–3 m

  h = 













 33 103
1

105.1
1

8.91000
07.02

m = 4.76 × 10–3 m = 4.76 mm

Ex. 32.  Two narrow bores of diameters 3.0 mm and 6.0
mm are joined together to form a U-shaped tube
open at both ends. If the U-tube contains water,
what is the difference in its levels in the two limbs of
the tube? Surface tension of water at the temperature
of the experiment is 7.3 × 10–2 Nm–1. Take the angle
of contact to be zero, and density of water to be 1.0
× 103 kg m–3 (g = 9.8 ms–2).

Sol. Given that r
1
 = 

2
0.3

 = 1.5 mm = 1.5 × 10–3 m,

r
2
 = 

2
0.6

 = 3.0 mm = 3.0 × 10–3 m,

T = 7.3 × 10–2 Nm–1,  = 0º  = 1.0 × 103 kg m–1,
g = 9.8 ms–2

When angle of contact is zero degree, the radius of
the meniscus equals radius of bore.

Excess pressure in the first bore, P
1
 = 

2r
T2

= 3

2

105.1
103.72







 = 97.3 Pascal

Excess pressure in the second bore, P
2
 = 

2r
T2

= 3

2

103
103.72







 = 48.7 Pascal

Hence, pressure difference in the two limbs of the
tube
P = P

1
 – P

2
 = hg

or h = g
PP 21




 = 
8.9100.1

7.483.97
3 


 = 5.0 mm

CAPILLARY RISE IN A TUBE OF
 INSUFFICIENT LENGTH

We know, the height through which a liquid rises in
the capillary tube of radius r is given by

 h = gR
T2
  or h R = g

T2
  = constant

When the capillary tube is cut and its length is less
then h (i.e. h'), then the liquid rises upto the top of
the tube and spreads in such a way that the radius
(R') of the liquid meniscus increases and it becomes
more flat so that hR = h'R' = Constant. Hence the
liquid does not overflow.

If h' < h then R' > R  or 
'cos

r


 > 
cos

r

 cos ' < cos   ' > 
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Ex. 33.  If a 5 cm long capillary tube with 0.1 mm internal

diameter open at both ends is slightly dipped in water

having surface tension 75 dyne cm–1, state whether

(i) water will rise half way in the capillary. (ii) Water

will rise up to the upper end of capillary (iii) Water

will overflow out of the upper end of capillary/

Explain your answer.

Sol. Given that surface tension of water, T = 75 dyne/cm

Radius r = 
2
1.0

mm = 0.05 mm = 0.005 cm,

density  = 1 gm/cm3, angle of contact,  = 0º.

Let h be the height to which water rise in the capillary

tube. Then

h = gr
cosT2



 = 9811005.0

º0cos752



 cm = 30.58 cm.

But length of capillary tube, h’ = 5 cm

(i) Because h > 
2
'h
 therefore the first possibility does

not exist.

(ii) Because the tube is of insufficient length therefore

the water will rise upto the upper end of the tube.

(iii) The water will not overflow out of the upper end of

the capillary. It will rise only upto the upper end of

the capillary.

The liquid meniscus will adjust its radius of curvature

R’ in such a way that

R’h’ = Rh 










 constant

g
T2hR

where R is the radius of curvature that the liquid

meniscus would possess if the capillary tube were

of sufficient length

 R’ = 
'h

Rh
 = 

'h
rh






 


 r
º0cos

r
cos

rR

= 
5

58.30005.0   = 0.0306 cm

 APPLICATIONS OF SURFACE

 TENSION

(i) The wetting property is made use of in detergents

and waterproofing. When the detergent materials are

added to liquids, the angle of contact decreases and

hence the wettability increases. On the other hand,

when water proofing material is added to a fabric, it

increases the angle of contact, making the fabric

water-repellant.

(ii) The antiseptics have very low value of surface tension.

The low value of surface tension prevents the

formation of drops that may otherwise block the

entrance to skin or a wound. Due to low surface

tension the antiseptics spreads properly over the

wound. The lubricating oils and paints also have low

surface tension. So they can spread properly.

(iii) Surface tension of all lubricating oils and paints is

kept low so that they spread over a large area.

(iv) Oil spreads over the surface of water because the

surface tension of oil is less than the surface tension

of cold water.

(v) A rough sea can be calmed by pouring oil on its

surface.

 EFFECT OF TEMPERATURE AND

 IMPURITIES ON SURFACE

 TENSION

The surface tension of a liquid decreases with the

rise in temperature and vice versa. According to

Ferguson, T = T
0

n

c
1 











  where T
0
 is surface

tension at 0ºC,  is absolute temperature of the liquid,


c
 is the critical temperature and n is a constant varies

slightly from liquid and has mean value 1.21. This

formula shows that the surface tension becomes zero

at the critical temperature, where the interface

between the liquid and its vapour disappears. It is

for this reason that hot soup tastes better while

machinery parts get jammed in winter.
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The surface tension of a liquid changes appreciably
with addition of impurities. For example, surface
tension of water increases with addition of highly
soluble substances like NaCI, ZnSO

4
 etc. On the

other hand surface tension of water gets reduced
with addition of sparingly soluble substances like
phenol, soap etc.

 SURFACE ENERGY

We know that the molecules on the liquid surface
experience net downward force. So to bring a
molecule from the interior of the liquid to the free
surface, some work is required to be done against
the intermolecular force of attraction, which will be
stored as potential energy of the molecule on the
surface. The potential energy of surface molecules
per unit area of the surface is called surface energy.
Unit of surface energy is erg cm–2 in C.G.S. system
and Jm–2 in Sl system. Dimensional formula of surface
energy is [ML°T–2 ] Surface energy depends on
number of surfaces e.g. a liquid drop is having one
liquid air surface while bubble is having two liquid
air surface.

 RELATION BETWEEN SURFACE

 TENSION AND SURFACE ENERGY

Consider a rectangular frame PQRS of wire, whose
arm RS can slide on the arms PR and QS. If this
frame is dipped in a soap solution, then a soap film
is produced in the frame PQRS in fig. Due to surface
tension (T), the film exerts a force on the frame
(towards the interior of the film). Let  be the length
of the arm RS, then the force acting on the arm RS
towards the film is. F = T × 2 [Since soap film has
two surfaces, that is why the length is taken twice].

Let the arm RS be displaced to a new position R'S'
through a distance x

 work done, W = Fx = 2Tx

Increase in potential energy of the soap film.

= EA = 2Ex = work done in increasing the area
(W)  where E = surface energy of the soap film per
unit area.

According the law of conservation of energy, the

work done must be equal to the increase in the

potential energy

 2T x = 2Ex or T = E = 
A
W

Thus, surface tension is numerically equal to surface

energy or work done per unit increase surface area.

Ex. 34.  A mercury drop of radius 1 cm is sprayed into

106 droplets of equal size. Calculate the energy

expanded if surface tension of mercury is 35 × 10–3

N/m.

Sol. If drop of radius R is sprayed into n droplets of equal

radius r, then as a drop has only one surface, the

initial surface area will be 4R2 while final area is

n(4r2). So the increase in area

S = n(4r2) – 4R2

So energy expended in the process,

W = TS = 4T [nr2 – R2] .... (1)

Now since the total volume of n droplets is the same

as that of initial drop, i.e.,

3
4
R3 = n[(4/3) r3]   or r = R/n1/3    ....(2)

Putting the value of r from equation (2) in (1)

W = 4R2T (n)1/3 – 1].

Ex. 35.  If a number of little droplets of water, each of

radius r, coalesce to form a single drop of radius R,

show that the rise in temperature will be given be








 
R
1

r
1

J
T3

where T is the surface tension of water and J is the

mechanical equivalent of heat.
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Sol. Let n be the number of little droplets.

Since volume will remain constant, hence volume of
n little droplets = volume of single drop

 n × 3
4
r3 = 3

4
R3 or nr3 = R3

Decrease in surface area = n × 4r2 – 4R2

or A = 4 [nr2 – R2] = 4











 2

3
R

r
nr

 = 4












 2

3
R

r
R

 = 4R3 




 
R
1

r
1

Energy evolved W = T × decrease in surface

area = T × 4R3 




 
R
1

r
1

Heat produced, Q = J
W

 = 
J
RT4 3






 
R
1

r
1

But Q = ms d

where m is the mass of big drop, s is the specific
heat of water and d is the rise in temperature.

 




 


R
1

r
1

J
RT4 3

 = volume of big drop × density

of water × sp. heat of water × d

or, 3R
3
4
  × 1 × 1 × d = 







 


R
1

r
1

J
RT4 3

or,

d = 
J
T3






 
R
1

r
1

Ex. 36.  A film of water is formed between two straight
parallel wires each 10 cm long and at a separation
0.5 cm. Calculate the work required to increase 1
mm distance between them.

Surface tension of water = 72 × 10–3 N/m.

Sol. Here the increase in area is shown by shaded portion
in the figure.

Since this is a water film, it has two surfaces, therefore

increase in area,  S = 2 × 10 × 0.1 = 2 cm2

 Work required to be done,

W = S × T = 2 × 10–4 × 72 × 10–3

= 144 × 10–7 joule = 1.44 × 10–5 joule


