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1. SOUND WAVES
Sound is type of longitudnal wave. In general majority of longitudinal waves are termed as sound waves.
Sound is produced by a vibrating source, like when a gong of a bell is struck with a hammer, sound is
produced. The vibrations produced by gong are propagated through air, Through air these vibrations
reach to the ear and ear drum is set into vibrations and these vibrations are communicated to human
brain. By touching the gong of bell by hand, we can feel the vibrations.

2. PROPAGATION OF SOUND WAVES
Sound is a mechanical three dimensional and longitudinal wave that is created by a vibrating source such
a guitar string, the human vocal cords, the prongs of a tuning fork or the diaphragm of a loudspeaker.
Being a mechanical wavs, sound needs a medium having properties of inetia and elasticity for its propagation.
Sound waves propagate in any medium through a series of periodic compressions and rarefactions of
presure, which is produced by the vibrating source.
Consider a tuning fork producing sound waves.
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When Prong B moves outward towards right it compresses  the air in front of it, causing the pressure to
rise slightly. The region of increased pressure is called a compression   pulse and it travels away from the
prong with the speed of  sound
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After producing the compression pulse, the prong B reverses its motion and moves inward. This drages
away some air from the region in front of it, causing the pressure to dip slightly below the normal pressure.
This region of decreased pressure is called rarefaction pulse. Following immediately behind the compression
pulse, the rarefaction pulse also travels away from the prong with the speed of sound.
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A longitudinal wave in a fluid is described either in tems of the longitudal displacements suffered by the
particles of the medium.
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Consider a wave going in the x-direction in a fluid. Suppose that at a time t, the particle at the undistrubed
position x suffers a displacement y in the x-direction.

y =  A sin  







v

x
–t ...(i)

Position of any particle from origin at any time = x + y
x = Distance of the mean position of the particle from the origin.
y = Displacement of the particle from its mean position.

General Equation :
(0,0)   y = A sin (t + )
(0,x)   y = A sin [(t – x/v ) + 

Displacement wave y = A sin (t – kx  + )
• If we fix x = x0 then we are dealing with the particle whose mean position at distance x0 from origin & this

particle is performin SHM of amp. A with time period T phase difference = – kx + 

3. COMPRESSION WAVES
When a longitudinal wave propagated in a gaseous medium, it produces compression and rarefaction in
the medium periodically. The region where compression occurs, the pressure is more than the normal
pressure of the medium. Thus we can also describe longitudinal waves in a gaseous medium as pressure
waves and these are also termed as compression waves in which the pressure at different point of
medium also varies periodically with their displacements. Let us discuss the propagation of excess pressure
in a medium in longitudinal wave analytically.

y+dy
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A'A
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Consider a longitudinal wave propagating in positive x-direction as shown in figure. Figure shows a
segmentAB of the medium of width dx. In this medium let a longitudinal wave is propagating whose
equation is given as

y = A sin (t – kx) ...(1)
Where y is the displacement of medium particle situated at a distance x from the origin, along the
direction of propagation of wave. In figure shown AB is the medium segment whose a medium particle is at
position  x = x and B is at x = x +dx at an instant. If after some time t medium particle at A reaches to a
point A' which is displaced by y and the medium particle at b reaches to point B which is at a displacmenet
y + dy from B. Here dy is given by equation (3.116) as

dy = – Ak cos (t – kx) dx
Here due to displacement of section AB to AB the change in volume of it's section is given as

dV = – S dy [S  Area of cross-section]
   = SA k cos (t – kx) dx

The volume of section AB is V = S dx
Thus volume strain in section AB is

dV

V

SAk t kx dx

Sdx


– cos( – )
or

dV

V
Ax t kx – cos( – )

If B is the bulk modulus of the medium, then the excess pressure in the section AB can be given as

P = –B
dV

V






...(2)

P = BAk cos (t – kx)



Page # 3SOUND WAVES

Power by: VISIONet Info Solution Pvt. Ltd  Website : www.edubull.com   Mob no. : +91-9350679141
1

or P = P0cos(t – kx) ...(3)
 Here P0 is the  pressure amplitude at a medium particle at position x from origin and P is the excess
pressure at that point. Equation shown that excess varies periodically at every point of the medium with
pressure amplitude P0, which is given as

P0  = BAk  = 
2


AB ...(4)

Equation shown is also termed as the equation of pressure wave in gaseous medium. We can also see that
the pressure wave differs in phase is /2 from the displacement wave and pressure maxima occurs where
the displacement is zero and displacement maxima occur where the pressure is at its normal level.
Remembers that pressure maxima implies that the presure at a point is pressure amplitude times more or
less then the normal pressure level of the medium.

3.1 Velocity and Acceleration of particle :
General equation of wave is given by

y = A sin (t – kx)

v = t

y




 = A  cos (t – kx) ...(1)

a =  2

2

t

y




 = – A2 sin ( t – kx) ...(2)

y
–Ak cos( t – kx)

x


 

 ...(3)

Here  x

y




 = slope of (y, x) curve Now again differentiate eq. – 3

2
2

2

y
–Ak sin( t – kx)

x


 

 ...(4)

from eq. (2) & (4)
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4. VELOCITY OF SOUND/LONGITUDINAL WAVES IN SOLIDS
Consider a section AB of medium as shown in figure(a) of cross-sectional area S. Let A and B be two cross
section as shown. Let in this medium sound propagation is from left to right. If wave source is at origin O
and when it oscillates, the oscillations at that point propagate along the rod.

A B

velocity of sound

xO dx
(a)

A' B'

x + yO dx+dy

(b)

Here we say an elastic wave has propagated along the rod with a velocity determined by the physical
properties of the medium. Due to oscillations say a force F is developed at every point of medium which
produces a stress in rod and is the cause of strain or propagation of disturbance along the rod. This stress
at any cross-sectional area can be given as

Stress S1 = 
F

S
...(1)

If we consider the section AB of medium at a general instant of time t. The end A is at a distance x from
O and B is at a distance x + dx from O. Let in time dt due to oscillations, medium particles at a are
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displaced along the length of medium by y and those at B by y + dy. The resulting position of section and
A and B shown in figure (b), Here we can say that the section AB is deformed (elongated) by a length dy.
Thus strain produced in it is

Strain in section AB E
dy

dx
 ...(2)

If Young's modulus of the material of medium is Y, we have

Young's Modulus Y = 
Stess

Strain
 = 

S

E
1

From equation (1) and (2), we have Y
F S

dy dx


/

/

or
dx

dy
YSF  ...(3)

If net force acting of secting AB is dF then it is given as
dF = dma ...(4)

Where dm is the mass of section AB and a be its acceleration, which can be given as for a medium of density .

dm = Sdx and a = 
d y

dt

2

2

From equation (4), we have  dF = (Sdx) 
2

2

d y

dx

or
dF

dx
S

d y

dt
 

2

2 ...(5)

From equation (3) on differentiating w.r. to x, we can write

dF

dx
YS

d y

dt


2

2 ...(6)

From equation (5) and (6) we get

d y

dx

Y d y

dx

2

2

2

2









 ....(7)

Equation (7) is the differential form of wave equation, comparing it with previous equation we get the
wave velocity in the medium can be given as

v
Y




Similar to the case of a solid in fluid, instead of Young's Modulus we use Bulk modulus of the medium hence
the velocity of longitudinal waves in a fluid medium is given as

B
v 


Where B is the Bulk modulus of medium.
For a gaseous medium bulk modulus is defined as

B
dp

dV V


(– / ) or B V
dP

dV
 –

4.1 Newton's Formula for velocity of Sound in Gases
Newton assumed that during sound propagation temperature of medium remains constant hence the
stated that propagation of sound in a gasesous medium is an isothermal phenomenon, thus Boyal's law
can be applied in the process. So for a section of medium we use

PV = constant
Differentiating we get

PdV + V dP = 0

or –V
dP

dV
P
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or bulk modulus of medium can be given as
B = P (Pressure of medium)

Newton found that during isothermal propagation of sound in a gaseous medium, bulk modulus of medium
is equal to the pressure of the medium, hence sound velocity in a gaseous medium can be given as

v
B P

 
  ...(1)

From gas law we have
P RT

M
 ...(2)

From (1) & (2) we have v
RT

M
 ...(3)

From the expression in equation (1) if we find the sound veloicty in air at normal temperature and
atompsheric pressure we have
Normal atmospheric pressure is P = 1.01 × 105 Pa
Density of air at NTP is  = 1.293 kg/m3

Now from equation (1) v = 
P

    v 
101 10

1293

5.

.
 = 279.45 m/s

But the experimental value of veloicty of sound determined from various experiments gives the velocity of
sound at NTP, 332 m/s. Therefore there is a difference of about 52 m/s between the theoretical and
experimental values. This large difference can not be attributed to the experimental errors. Newton was
unable to explain error in his formula. This correction was explained by a French Scientist Laplace.

4.2 Laplace Correction
Laplace explained that when sound waves propagated in a gaseous medium. There is compression and
rarefaction in the particles of medium. Where there is compression, particles come near to each other and
are heated up, where there is rarefaction, medium expends and there is fall of temperature. Therefore,
the temperature of medium at every point does not remain constant so the process of sound propagation
is not isothermal. The total quantity of heat of the system as a whole remains constant. medium does not
gain or loose any heat to the surrounding. Thus in a gaseous medium sound propagation is an adiabatic
process. For adiabatic process the relation in pressure and volume of a section of medium can be given as

PV = constant ...(1)

Here  = 
C

C
p

v
, ratio of specific heats of the medium.

Differentiating equation (1) we get,
dPV + V–1 dVP =   0

or dP +  
PdV

dV
 = 0

or – V 
dP

dV
P 

Bulk modulus of medium B =  P
Thus Laplace found that during adiabatic propagation of sound, the Bulk modulus of gaseous medium is
equal to the product of ratio of specific heats and the pressure of medium. Thus velocity of sound
propagation can be given as

v
B P

 





From gas law v
RT

M




From above equation  we find sound velocity in air at NTP, we have
Normal atmospheric pressure P = 1.01 × 105 Pa

Density of air at NTP P = 1.293 kg/m3
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Ratio of specific heat of air   
C

C
p

v

142.

 


v  = 
142 101 10

1293

5. .

.

 
 = 333.04 m/s

This value is in agreement with exerimental value.

Now at any temperature t°C velocity of sound vt = 
M

)t273(R 
 = 

2/1

273

t
1

M

273R







 


vt = v0 






 
546

t
1

4.3 Effect of Temperature on Velocity of Sound
We have velocity of sound propagation in a gasous medium as

v
RT

M




For a given gaseous medium , R and M remains constant, thus velocity of sound is directly proportional to
square root of absolute temperature of the medium. Thus

v T
If at two different temperatures T1 and T2, sound velocities in medium are v1 and v2 then from above
equation  we have

v

v

T

T
1

2

1

2



4.4 Effect of Pressure on Velocity of Sound
We know form gas law

P RT

M


If temperature of a medium remains constant then on changing pressure, density of medium proportionally

changes so that the ratio 
P

  remains constant.

Hence if in a medium, T = constant

Then,
P

  = constant

Thus velocity of sound, v = 


P

 = constant

Therefore, the velocity of sound in air or in a gas is independent of change in pressure.

4.5 Effect of Humidity on Velocity of Sound
The density of water vapour at NTP is 0.8 kg/m3 whereas the density of dry air at NTP is 1.293 kg/3.
Therefore water vapour has a density less than the density of dry air. As atmospheric pressure remains
approximately same, the velocity of sound is more in moist air then the velocity of sound in dry air.

vmoist air > vdry air (from the previous equation)
4.6 Effect of Wind on Velocity of Sound

If wind is blowing in the direction of propagation of sound, it will increase the velocity of sound, On the
other hand if wave propagation is opposite to the direction of propagation of wind, wave velocity is
decreased. If wind blows at speed v then sound velocity in the medium can be given as

s wv v v
 

 

Where v s

  is the velocity of sound in still air..



Page # 7SOUND WAVES

Power by: VISIONet Info Solution Pvt. Ltd  Website : www.edubull.com   Mob no. : +91-9350679141
1

5. APPEARANCE OF SOUND TO HUMAN EAR
The appearance of sound to a human ear is characterised by three parameters (a) pitch (b) loudness and
(c) quality.

(a) Pitch and Frequency
Pitch of a sound is that sensation by which we differentiate a buffalo voice, a male voice and a female
voice. We say that a buffalo voice is of low pitch, a male voice has higher pitch and a female voice has
still higher pitch. This sensation primarly depends on the dominant frequency present in the sound. Higher
the frequency, higher will be the pitch and vice versa.

(b) Loudness and Intensity
The loudness that we sense is related to the intensity of sound though it is not directly proportional to it.
Our perception of loudness is beter correlated with the sound level measured in decibels (abbreviated as
dB) and defined as follows.











0
10 I

I
log10

where I is the intensity of the sound and I0 is a constant reference intensity 10–12 W/m2 The reference
intensity represents roughly the minimum intensity that is just audible at intermediate frequencies. For
I = I0 , the sound level  = 0.

(c) Quality and Waveform
A sound generated by a source may contain a number of frequency components in it. Different frequency
components have different amplitudes and superposition of them results in the actual waveform. The
appearance of sound depends on this waveform apart from the dominant frequency and intensity. Figure
shows waveforms for a tuning fork, a clarinet and a cornet playing the same note (fundamental frequency
= 440 Hz) with equal loudness.

t

p

   t

p

   t

p

We differenatiate between the sound from a tabla and that from a mridang by saying that they have
different quality.

(d) Energy in sound Waves
Pavg = 22f2A2 v
Intensity = 22A2 f2 v

)kx–tcos(PP 0 

AkP 3
0    

K

P
A 0






Intensity = 
2

vA 22 
 = 22

2
0

2

k2

vP




22

32
0

2

2

vP





2

22
0

2

v.vP










2

2
0

2

v.P














v





.2

VP
I

2
0

6. ANALYTICAL TREATMENT OF INTERFERENCE OF WAVES
S1

S2

x1

x2

A t kx1 sin( ) 

A t kx2 sin( ) 

y A t kx2 2 2 sin( )

y A t kx1 1 1 sin( )
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Interference implies super position of waves. Whenever two or more than two waves superimpose each
other  at some position then the resutant displacement of the particle is given by the vector sum of the
individual displacements.
Let the two waves coming from sources S1 & S2 be

y1 = A1 sin ( t + kx1 )
y2 = A2 sin (t + kx2) respectively.

Due to superposition
ynet = y1 + y2

ynet = A1 sin ( t + kx1) + A2 sin (t + kx2)
Phase difference between y1 & y2 = k(x2 – x1)
i.e.,   = k(x2 – x1)

As  = x
2





(where x = path difference &  = phase difference)

Anet  = A A A A1
2

2
2

1 22  cos

 A A A A Anet
2

1
2

2
2

1 22   cos

   Inet = I1 + I2 + cosII2 21   (as I  A2)

When the two displacements are in phase, then the resultant amplitude will be sum of the two amplitude
& Inet will be maximum, this is known of constructive interference.
For Inet to be maximum

cos = 1     = 2nwhere n = {0,1,2,3,4,5...........}

2
2




x n     x = n

For constructive interference

Inet = 2
21 )II( 

When  I1 = I2 = I
Inet = 4 I

Anet = A1  + A2

When superposing waves are in opposite phase, the resultant amplitude is the difference of two amplitudes
& Inet is minimum; this is known as destructive interference.
For Inet to be minimum,

cos  = – 1
  = (2n + 1)  where n = {0,1,2,3,4,5...........}

2


x  = (2n + 1)   x = ( )2 1
2

n 


For destructive interference

Inet = ( – )I I1 2
2

If I1 = I2

Inet = 0
Anet = A1 – A2

Generally,

Inet = I1 + I2 + cosII2 21

If I1 = I2 = I
Inet = 2I + 2Icos

Inet = 2I(1 + cos ) = 4Icos2 

2

Ratio of Imax & Imin = 
( )

( – )

I I

I I

1 2
2

1 2
2


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7. LONGITUDINAL STANDING WAVES
Two longitudinal waves of same frequency and amplitude travelling in opposite directions interfere to
produce a standing wave.
If the two interfering waves are given by

p1 = p0 sin (t – kx) and p2 =p0 sin (t + kx + )
then the equation of the resultant standing wave would be given by

p = p1 + p2 = 2p0cos (kx + 

2

) sin (t + 

2

)

 p = p0' sin (t + 

2

) ...(1)

This is equation of SHM* in which the amplitude p0' depends on position as

p0' = 2p0cos (kx + 

2

) ...(2)

Points where pressure remains permanently at its average value, i.e., pressure amplitude is zero is called
a pressure node, and the condition for a pressure node would be given by

p0' = 0

i.e. cos( )kx  

2

0

i.e. kx + 

2

 = 2n ± 

2

, n = 0,,1,2.......

Similarly points where pressure amplitude is maximum is called a pressure antinode and condition for a
pressure antinode would be given by

p0' = ±2p0

i.e. cos (kx + 

2

) = ± 1

or (kx + 

2

) = n, n = 0, 1, 2,.......

Note :
• Note that a pressure node in a standing wave would correspond to a displacement antinode; and a

pressure anti-node would correspond to a displacement node.
• (when we label eqn. (1) as SHM, what we mean that excess pressure at any point varies simple harmonically.

if the sound waves were represented in terms of displacement waves, then the equation of standing wave
corresponding to (1) would be

s = s0' cos (t + 

2

) where s0' = 2s0 sin (kx + 

2

)

This can be easily observed to be an equation of SHM. It represents the medium particles moving simple
harmonically about their mean position at x.

8. REFLECTION OF SOUND WAVES
Reflection of sound waves from a rigid boundary (e.g. closed end of an organ pipe) as analogous to
reflection of a string wave from rigid boundary; reflection accompanied by an inversion i.e. an abrupt
phase change of p. This is consistent with the requirement of displacement amplitude of remains zero at
the rigid end, since a medium particle at the rigid end can not vibrate. As the excess pressure and
displacement corresponding to the same sound wave vary by /2 in term of phase, a displacement minima
at the rigid end will be a point of pressure maxima. This implies that the reflected pressure waves from the
rigid boundary will have same phase as the incident wave, i.e., a compression pulse is reflected as a
compression pulse and a rarefaction pulse is reflected as a rarefaction pulse
On the other hand, reflection of sound wave from a low pressure region (like open end of an organ pipe) is
analogies to reflection of string wave from a free end. This point corresponds to a displacment maxima, so
that the incident & reflected displacement wave at this point must be in phase. This would imply that this
point would be a minima for pressure wave (i.e. pressure at this point remains at its average value), and
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hence thereflected presure wave would be out of phase by  with respect to the incident wave. i.e. a
compression pulse is reflected as a rarefaction pulse and vice-versa.

9. WAVES IN A VIBRATING AIR COLUMN
Hollow pipes have long used for making musical sounds. A hollow pipe we call organ pipe. To understand
how these work, first we examine the behaviour of air in a hollow pipe that is open at both ends. If we
blow air across one end, the disturbance due to the moving air at that end propagates along the pipe to
the far end. When it reaches far end, a part of the wave is reflected, similar in the case when a wave is
reflected along a string whose end point is free to move. Since the air particles are free to move at the
open end, the end point is an antinode. if one end of the pipe is closed off, the the air is not free to move
any further in that direction and closed end becomes a node. now the resonant behaviour of pipe is
completely changed. Similar in the case of string, here also all harmonic frequencies are possible and
resonance may take place it the frequency of external source matches with any of the one harmonic
freuquency of pipe. Let us discuss in detail.

9.1 Vibration of Air in a Closed Organ Pipe
When a tuning fork is placed near the open end of a pipe. The air in the pipe oscillates with the same
frequency as that of tuning fork. Here the open end should be an antinode and closed and should be a
node for perfect reflection of waves from either end or for formation of stationary waves. Since one end
is a node and other is an antinode, the lowest frequency (largest wavelength) vibration has no other
nodes or antinodes between ends as shown in figure(a). This is the fundamental (minimum) frequency at
which stationary waves can be formed in a closed organ pipe. Thus if the wavelength is  then we can see
from figure (a), which shows the displacement wave of longitudinal waves in the closed organ pipe.

l = 
4


...(1)

or  = 4 l

l

(a) (b) (c)

Thus fundamental frequency of oscillations of closed organ pipe of length l be given as

n1 = 



 = 
l4


...(2)

Similarly first overtone of closed pipe vibrations is shown in figure (b) here wavelength  and pipe length
l are related as

4

'3
l ...(3)

or
3

4
'

l


Thus frequency of first overtone oscillatinos of a closed organ pipe of length l can be given as

n2 = 
'


 = 
l4

3
...(4)

= 3n1
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This is three times the fundamental frequency thus after fundamental only third harmonic frequency exist
for a closed organ pipe at which resonance can take place or stationary waves can be formed in it.
Similarly next overtone, second overtone is shown in figure(c). Here the wavelength  and pipe length l
are  related as

4

"5
l

or
5

4
"

l


Thus the frequency of second overtone oscillation of a closed organ pipe of length l can be given as

n3 = 
''


 = 1n5

4

5



l

This is fifth harmonic frequency of fundamental oscillations.

In general f = 4

v)1–n2(

Here frequency of oscillation is called (2n – 1)th harmonic and (n – 1)th overtone
From above analysis it is clear that the resonant frequecies of the closed organ pipe are only odd
harnomics of the fundamental frequency.

9.2 Vibration of Air in Open Organ Pipe
Figure shown the resonant oscillations of an open organ pipe. The least frequency at which an open organ
pipe resonates is the one with longest wavelength when at both the open ends of pipe antinodes are
formed and there is one node is between as shown in figure (a). In this situation the wavelengths of
sound in air  is related to length of organ pipe as

l = 

2

or  = 2 l ...(1)
Thus the fundamental frequency of organ pipe can be given as

n
v v

1 2
 
 l

l

(a) (b) (c)

Similarly next higher frequency at which the open organ pipe resonate is shown in figure (b) which we call
first overtone. Here the wavelength ' is related to the length of pipe as

l =  ....(2)
Thus here resonant frequency for first overtone is given as

n
v v

2  
' l

...(3)

Which is second harmonic of fundamental frequency. Similarly as shown in figure (c), in second overtone
oscillations, the wavelength '' of sound is releated to the length of pipe as
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l 
3

2

' '
...(4)

or ' '
2

3

l
...(5)

Thus be frequency of second overtone oscillations of an open organ pipe can given as

n
v v

3
3

2
 
' ' l

...(6)

= 3n1 ...(7)
Which is third harmonic of fundamental frequency.

In General f = 2

nv

we can say frequency of oscillation is called nth harmonic and (n – 1)th overtone
The above analysis shown that resonant frequencies for formation of stationary waves includes all the
possible harmonic frequencies for an open organ pipe.

9.3 End correction
As mentioned earlier the displacment antinode at an open end of an organ pipe lies slightly outside the
open lend. The distance of the antinode from the open end is called end correction and its value is given
by

e = 0.6 r

e=0
6r

A0
Np Np

2rP

where r = radius of the organ pipe.
with end correction, the fundamental frequency of a closed pipe (fe) and an open argon pipe (f0) will be
given by

f
v

re 
4 0 6( . )   and  f

v

r0 2 12


( . )

9.4 Resonance Tube
This an apparatus used to determine velocity of sound in air experimentally and also to compare frequncies
of two tuning forks.
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shown figure the setup of a resonance the experiment.   There is a long tube T in which initially water is
filled upto the top and the eaer level can be change by moving a reservoir R up and down.
A tunning fork of known frequency n0 is struck gently on a rubber pad and brought near the open and
tube T due to which oscillations are transferred to the air coloumn in the tube above water level. Now we
gradually decrease the water level in the tube. This air column behaves like a closed organ pipe and the
water level as closed end of pipe. As soon as water level reaches a position where there is a node of
corresponding stationary wave, in air column, resonance takes place and maximum sound intensity is
detected. Let at this position length of air column be I1. If water level is further decreased, again maximum
sound intensity is observed when water leel is at another node i.e. at a length l2 as shown in figure. Here
if we find two successive resonance lengths l1 and l2, we can get the wavelength of the wave as

l2 – l1 = 

2

or   2 2 1( – )l l

Thus sound velocity in air can be given as

v n n 0 0 2 12 ( – )l l

9.5 Quink's Tube
This is an apparatus used to demonstrate the phenomenon of interference and also used to measure
velocity of sound in air. This is made up of two U-tubes A and B as shown in figure. Here the tube B can
slide in and out from the tube A. There are two openings P and Q in the tube A. At opening P, a tuning fork
or a sound source of known frequency n0 is placed and at the other opening a detector is placed to detect
the resultant sound of interference occurred due to superposition of two sound waves coming from the
tubes A and B.

A

Initially tube B is adjusted so that detector detects a maximum. At this instant if length of paths covered
by the two waves from P to Q from the side of A and side of B are l1 are l2 respectively then for
constructive interference we must have

l2 – l2 = N ...(1)
If now tube B is further pulled out by a distance x so that next maximum is obtained and the length of path

from the side of B is l2
'  then we have

l l2 2 2'   x ...(2)
Where x is the displacement of the tube. For next constructive interference of sound at point Q, we have

l l2 1 1' – ( ) N  ..(3)
From equation (1), (2) and (3), we get

or x = 

2

...(4)

Thus by experiment we get the wavelength of sound as for two sucessive points of constructive
interference, the path difference must be . As the tube B is pulled out by x, this introduces a path
difference 2x in the path of sound wave through tube B. If the frequency of the source is known, n0, the
velocity of sound in the air filled in tube can be given as

v = n0 = 2n0x ...(5)
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9.6 Vibrations of Clamped Rod
We have discussed the resonant vibrations of a string clamped at two ends. Now we discuss the ocillations
of a rod clamped at a point on its length as shown in figure. Figure shows a rod AB clamped at its middle
point. If we gently hit the rod at its one end, it begin to oscillate and in the natural oscillations the rod
vibrates at its lowest frequency and maximum wavelength, which we call fundamental mode of oscillations.
With maximum wavelength when transverse stationary waves setup in the rod, the free ends vibrates as
antinodes and the clamped end a node as shown in figure. Here if  be the wavelength of the wave, we
have

l = 

2

or  =2 l

C

BA

l

Thus the frequency of fundamental oscillations of a rod damped at mid point can be given as

n
v I Y

0 2
 
 l ...(1)

Where Y is the Young's modulus of the material of rod and  is the density of the material of rod.
Next higher frequency at which rod vibrates will be then one when wave length is decreased to a value so
that one node is inserted between mid point and an end of rod as shown in figure

C

A

l

B

In this case if  be the wavelength of the waves in rod, we have

l = 
3

2



or  
2

3

l
...(2)

Thus in this case the oscillation frequency of rod can be given as

01 n3
Y

2

3v
n 







l
...(3)

This is called first  overtone frequency of the damped rod or thid harmonic frequency. Similarly, the next
higher freqnecy of oscillation i.e. second overtone of the oscillating rod can be shown in figure shown.
Here is  be the wavelength of the wave then it can be given as

l 
5

2


or  

2

5

l
...(4)

C
A

l

B

Thus the frequency of oscillation of rod can be given as
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02 n5
Y

2

5v
n 







l
..(5)

Thus the second overtone frequency is the fifth harmonic of the fundamental oscillation frequency of rod.
We can also see from the above analysis that the resonant freqencies at which stationary waves are
setup in a damped rod are only odd harmonics of fundamental frequency.
Thus when an external source of frequency matching with any of the harmonic of the damped rod then
stationary waves are setup in the rod.

9.7 Natural Oscillation of Organ Pipes
When we initiate some oscillations in an organ pipe, which harmonics are excited in the pipe depends on
how initial disturbance is produced in it. For example, if you gently blow across the top of an organ pipe it
resonates softly at its fundamental frequency. But if you blow must harder you hear the higher pitch of an
overtone because the faster airsteam higher frequencies in the exciting disturbance. This sound effect
can also be achieved by increasing the air pressure to an organ pipe.

9.8 Kundt's Tube
This is an apparatus used to find velocity of sound in a gaseous medium or in different materials. It
consists of a glass tube as shown in figure. one end of which a piston B is fitted which is attached to a
wooden handle H and can be moved inside and outside the tube and fixed, the rod M of the required
material is fixed at clamp C in which the velocity of sound is required, at one end of rod a disc A is fixed as
shown.

In tube air is filled at room temperature and a thin layer of lycopodium powder is put along the length of
the tube. It is a very fine powder particles of which can be displaced by the air particles also.
When rod M is gently rubbed with a resin cloth or hit gently, it starts oscillating in fundamental mode as
shown in figure, frequency of which can be given as

n
v Y

rod  
 

1

2 0l
[As 0 = 


2

]

10. BEATS
When two sources of sound that have almost the same frequency are sounded together, an interesting
phenomenon occurs. A sound with a frequency average of the two is heard and the loudness of sound
repeatedly grows and then decays, rather than being constant. Such a repeated variation in amplitude of
sound are called 'beats".
If the frequency of one of the source is changed, there is a corresponding change in the rate at which the
amplitude varies. This rate is called beat fequency. As the frequencies come close together, the beat
frequency becomes slower. A musician can tune a guitar to another source by listening for the beats while
increasing or decreasing the tension in each string, eventually the beat frequency becomes very low so
that effectively no beats are heard, and the two sources are then in tune.
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We can also expalin the phenomenon of beat mathematically. Let us consider the two superposing
waves have frequencies n1 and n2 then their respective equations of oscillation are

y1 = A sin 2n1t ...(1)
and y2 = A sin 2n2t ...(2)
On superposition at a point, the displacement of the medium particle is given as

y = y1 + y2

y = A sin 2n1t + A sin 2n2t

y A
n n

t
n n

t












2 2
2

2
2

1 2 1 2cos
–

sin  ...(3)

y R
n n

t






sin2
2

1 2 ...(4)

There equation (4) gives the displacement of medium particle where susperposition takes place, it shows

that the particle executes SHM with frequency 
n n1 2

2


, average of the two superposing frequencies and

with amplitude R which varies with time, given as

R A
n n

t






2 2
2

1 2cos
–

 ...(5)

Here R becomes maximum when

cos
–

2
2

11 2
n n

t





 

or 2
2

1 2 
n n

t N
–




 [N  I]

or t
N

n n


1 2–

or at time t
n n n n

 0
1 2

1 2 1 2

,
–

,
–

,.........

At all the above time instants the sound of maximum loudness is heard, similarly we can find the time
instans when the loudness of sound is minimum, it occurs when

cos
–

2
2

01 2
n n

t








or 2
2

2 1
2

1 2
n n

t N
–

( )






  [N  I]

or t
N

n n





2 1

2 1 2( )

or  at time instants t
n n n n


1

2

3

21 2 1 2( – )
,

( – )
,.......

Here we can see that these time instants are exactly lying in the middle of the instans when loudest
sound is heard. Thus on superposition of the above two frequencies at a medium particle, the sound will
be increasing, decreasing, again increasing and decreasing and so on. This effect is called beats. Here the
time between two successive maximum or minimum sounds is called beat period, which is given as
Beat Period TB = time between two successive maxima = time between two successive minima


1

1 2n n–
Thus beat frequency or number of beats heard per second can be given as

21
B

B n–n
T

1
f 
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The superposition of two waves of slightly different frequencies is graphically shown in figure. The
resulting envelope of the wave formed after superposition is also shown in figure (b). Such a wave when
propagates, produces "beat" effect at the medium particles.

10.1 Echo
The repetition of sound produced due to reflection by a distant extended surface like a different, hill well,
building etc. is called an echo. The effect of sound on human ear remains for approximately one tenth of
a second. If the sound is reflected back in a time less then 1/10 of a second, no echo is heard. Hence
human ears are not able to distinguish a beat frequency of 10 Hz or more than 10 Hz.

11. DOPPLER'S EFFECT
When a car at rest on a road sounds its high frequency horn and you are also standing on the road near
by, you'll hear the sound of same frequency it is sounding but when the car approaches you with its horn
sounding, the pich (frequency) of its sound seems to drop as the car passes. This phenomenon was first
described by an Austrain Scientist Christien Doppler, is called the Doppler effect, He explained that when
a source of sound and a listener are in motion relative to each other, the frequency of the sound heard by
the listener is not the same as the source frequency. Lets discuss the Doppler effect in detail for different
cases.

11.1 Stationary Source and Stationary Observer
Figure shown a stationary sources of frequency n0 which produces sound waves in air of wavelength 0

given as

0
0


v

n [v = speed of sound in air]

*S
Source
(n  Hz)0

0
0


v

n
v

*Observer
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Although sound waves are longitudinal, here we represent sound weaves by the transverse displacement
curve as shown in figure to understand the concept in a better way. As source produces waves, these
waves travel towards, stationary observer O in the medium (air) with speed v and wavelength 0. As
observer is at rest here it will observe the same wavelength 0 is approaching it with speed v so it will
listen the frequency n given as

n
v

n 
0

0 [same as that of source] ...(1)

This is why when a stationary observer listends the sound from a stationary source of sound, it detects
the same frequency sound which the source is producting. Thus no Doppler effect takes place if there is
no relative motion between source and observer.

11.2 Stationary Source and Moving Observer
Figure shown the case when a stationary sources of frequency n0 produces sound waves which have
wavelength in air given as

0
0


v

n

*S
Source
(n  Hz)0

0
0


v

n
v

Observer

v0

O

These waves travel toward moving observer with velocity v0 towards, the source. When sound waves
approach observer, it will receive the waves of wavelength 0 with speed v + v0 (relative speed). Thus the
frequency of sound heard by observer can be given as

Apparent frequency nap = 
v v 0

0



















v v

v
n

n
v v

v
0

0

0
0

...(2)

Similarly we can say that if the obsever is receding away from the source the apparent frequency heard
by the observer will be given as

n n
v v

vap 




0

0–
...(3)

11.3 Moving Source and Stationary Observer
Figure shows the situation when a moving source S of frequency n0 produces sound waves in medium (air)
and the waves travel toward observer with velocity v.

**
vs

S S'

ap

0

Source
(n  Hz)0

v
ns
1

0











A

v

O
Observer
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Here if we carefully look at the initial situation when source starts moving with velocity vs as well as it

starts producting waves. The period of one oscillation is 
1

0n









  sec and in this duration source emits one

wavelength 0 in the direction of propagation of waves with speed v, but in this duratin the source will

also move forward by a distance vs 
1

0n









 . Thus the effective wavelength of emitted sound in air is slightly

compressed by this distance as shown in figure. This is termed as apparent wavelength of sound in
medium (air) by the moving source. This is given as

Apparent wavelength  ap sv
n










0

0

1
– ...(1)

0

s

0

s00

n

v–v

n

v–n





Now this wavelength will approach observer with speed v ( O is at rest). Thus the frequency of sound
heard by observer can be given as

Apparent frequecy  n
v

ap
ap




= 
v

v v ns( – ) / 0
 = n

v

v vs
0 –









 ...(2)

Similarly if source is receding away from observer, the apparent wavelength emitted by source in air
toward observer will be slightly expanded and the apparent frequency heard by the stationary observer
can be given as

ap 0
s

v
n n

v v

 
  

 
...(3)

11.4 Moving Source and Moving Observer
Let us consider the situation when both source and observer are moving in same direction as shown in
figure at speeds vs and v0 respectively.

**S

0

v

O

vs

In this case the apparent wavelength emitted by the source behind it is given as

ap
sv v

n




0

Now this wavelength will approach the observer at relative speed v + v0 thus the apparent frequency of
sound heard by the observer is given as

n
v v

ap
ap


 0

  = n
v v

v vs
0

0










 ...(1)

By looking at the expression of apparent frequency given by equation, we can easily develop a general
relation for finding the apparent frequency heard by a moving observer due to a moving source as








 


s

0
0ap vv

vv
nn

 ...(2)

Here + and – signs are chosen according to the direction of motion of source and observer. The sign
covention related to the motion direction can be stated as :
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(i) For both source and observer v0 and vs are taken in equation with –ve sign if they are moving in the
direction of v  i.e. the direction of propagation of sound from source to observer..
(ii) For both source and observer v0 and vs are taken in equation (2) with +ve sign if they are moving in
the direction opposite to v  i.e. opposite to the direction of propagation of sound from source to observer..

11.5 Doppler Effect in Reflected Sound
When a car is moving toward a stationary wall as shown in figure. If the car sounds a horn, wave travels
towards the wall and is reflected from the wall. When the reflected wave is heard by the driver, it appears
to be of relatively high pitch. If we wish to measure the frequency of reflected sound then the problem
must be handled in two steps.

vc

reflected sound

First we treat the stationary wall as stationary observer and car as a moving source of sound of frequency
n0. In this case the frequency received by the wall is given as

n n
v

v vc
1 0











– ...(1)

Now wall reflects this frequency and behaves like a stationary source of sound of frequency n1 and car
(driver) behave like a moving observer with velocity vc. Here the apparent frequency heard by the car
driver can be given as

n n
v v

vap
c





1

= n
v

v v

v v

vc

c
0 –









 





  = n

v v

v v
c

c
0











– ...(2)

Same problem can also be solved in a different manner by using method of sound images. In this procedure
we assume the image of the sound source behind the reflector. In previous example we can explain this by
situation shown in figure.

ve vc

Here we assume that the sound which is reflected by the stationary wall is coming from the image of car
which is at the back of it and coming toward it with velocity vc. Now the frequency of sound heard by car
driver can directly be given as

nap = n0

v v

v v
c

c









– ...(3)
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This method of images for solving problems of Doppler effect is very convenient but is used only for
velocities of source and observer which are very small compared to the speed of sound and it should not
be used frequenctly when the reflector of sound is moving.

11.6 Doppler's Effect for Accelerated Motion
For the case of a moving source and a moving observer, we known the apparent frequency observer can
be given as








 


s

0
0ap vv

vv
nn

 ...(4)

Here v is the velocity of sound and v0 and vs are the velocity of observer and source respectively.
When a source of observer has accelerated or ratarded motion then in equation (4) we use that value of
v0 at which observer receies the sound and for source, we use that value of vs at which it has emitted the
wave.
The alternative method of solving this case is by the traditional method of compressing or expending
wavelength of sound by motion of source and using relative velocity of sound with respect to observer

11.7 Doppler's Effect when Source and Observer are not in Same Line of Motion
Consider the situation shown in figure. Two cars 1 and 2 are moving along perpendicular roads at speed v1

and v2. When car - 1 sound a horn of frequency n0, it emits sound in all directions and say car - 2 is at the
position, shown in figure. when it receives the sound. In such cases we use velocity components of the
cars along the line joining the source and observer thus the apparent frequency of sound heard by car-2
can be given as

n n
v v

v vap 








0

2 2

1 1

cos

– cos


 ...(6.266)

car-1

1
v1

v2

Car-2

2
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SOLVED EXAMPLE
Ex.1 On an average a human heart is found to beat

75 times in a minute. Calculate its frequency and

period.

Ans. The beat frequency of heart = 75/(1 min)

= 75/(60 s) = 1.25 s–1 = 1.25 Hz

The time period T = 1/(1.25 s–1) = 0.8 s

Ex.2 Which of the following functions of time

represent (a) periodic and (b) non-periodic

motion? Give the period for each case of periodic

motion [ is any positive constant].

(i) sin t + cos t

(ii) sin t + cos 2 t + sin 4 t

(iii) e–t

(iv) log (t)

Ans. (i) sin t + cos t is a periodic function, it can

also be written as 2 sin (t + /4).

Now 2  sin (t + /4)= 2  sin (t + /4 + 2)

= 2  sin [(t + 2/) + /4]

The periodic time of the function is 2/. (ii) This is

an example of a periodic motion. It can be noted that

each term represents a periodic function with a

different angular frequency. Since period is the least

interval of time after which a function repeats its

value, sin t has a period T0 = 2/; cos 2t has a

period / =T0/2; and sin 4t has a period 2/4 =

T0/4. The period of the first term is a multiple of the

periods of the last two terms. Therefore, the smallest

interval of time after which the sum of the three terms

repeats is T0, and thus the sum is a periodic function

with a period 2/. (iii) The function e–t is not periodic,

it decreases monotonically with increasing time and

tends to zero as t and thus, never repeats its value.

(iv) The function log(t) increases monotonically with

time t. It, therefore, never repeats its value and is a

non-periodic function. It may be noted that as  log(t)

diverges to ?. It, therefore, cannot represent any

kind of physical displacement.

Ex.3 Which of the following functions of time

represent (a) simple harmonic motion and (b)

periodic but not simple harmonic? Give the period

for each case.

(1) sin t – cos t (2) sin2 t

Ans.

(a) sin t – cos t = sin t – sin (/2 – t)

=  2  cos (/4) sin (t – /4) = 2 sin (t – /4)

This function represents a simple harmonic motion

having a period T = 2/ and a phase angle (–/4) or

(7/4) (b) sin2 t = ½ – ½ cos2 t

The function is periodic having a period T = /. It

also represents a harmonic motion with the point of

equilibrium occurring at ½ instead of zero.

Ex.4 Figure depicts two circular motions. The

radius of the circle, the period of revolution, the

initial position and the sense of revolution are

indicated on the figures. Obtain the simple

harmonic motions of the x-projection of the radius

vector of the rotating particle P in each case.

Ans.

(a) At t = 0, OP makes an angle of 45º = /4 rad

with the (positive direction of ) x-axis. After time t, it

covers an angle t T 2in the anticlockwise sense,

and makes an angle of 
T
2

 t + /4 with the x-axis.

The projection of OP on the x-axis at time t

is given by, (t)  = A cos (
T
2

t + /4) for T = 4s, x(t)

= A cos (2/4 + /4)
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which is a SHM of amplitude A, period 4 s, and an

initial phase = /4

(b) In this case at t = 0, OP makes an angle of with

the x-axis. After a time t, it covers an angle of

90º = 2/2 in the clockwise sense and makes an angle

of  
T
2

 t with the x-axis. The projection of OP on the

x-axis at time t is given by x(t) = B cos 2

Writing this as x (t ) = B cos 






 





2
t

15

x(t) = A cos (t + 4)

comparing with. We find that this represents a SHM

of amplitude B, period 30 s, and an initial phase of

2




Ex.5 A body oscillates with SHM according to the

equation (in SI units), x = 5 cos [2t + /4]. At

t = 1.5 s, calculate the (a) displacement, (b) speed

and (c) acceleration of the body.

Ans.The angular frequency of the body

= 2s–1 and its time period T = 1 s.

At t = 1.5 s

(a) displacement

= (5.0 m) cos [(2s–1) × 1.5 s + /4]

= (5.0 m) cos [(3 + /4)]

= –5.0 × 0.707 m

= –3.535 m

(b) Using Eq. (14.9), the speed of the body

= – (5.0 m)(2 s–1) sin [(2 s–1) ×1.5 s + /4]

= – (5.0 m)(2 s–1) sin [(3 + /4)]

= 10 × 0.707 m s–1

= 22 m s–1

(c) Using Eq., v(t) = 
dt
d

 x(t) the acceleration of the

body

= –(2 s–1)2 × displacement

= – (2 s–1)2 × (–3.535 m)

= 140 m s–2

Ex.6 Two identical springs of spring constant k are

attached to a blockof mass m and to fixed supports

as shown in Fig. Show that when the mass is

displaced from its equilibrium position on either

side, it executes a simple harmonic motion. Find

the period of oscillations.

Ans. Let the mass be displaced by a small distance x
to the right side of the equilibrium position, as shown
in Fig. Under thissituation the spring on the left side
gets

elongated by a length equal to x and that on the right
side gets compressed by the same length. The forces
acting on the mass are then, F1 = –k x (force exerted
by the spring onthe left side, trying to pull the mass
towards the mean position)
F2 = –k x (force exerted by the spring on the right
side, trying to push the mass towards the mean
position)
The net force, F, acting on the mass is then given by,
F = –2kx
Hence the force acting on the mass is proportional to
the displacement and is directed towards the mean
position; therefore, the motion executed by the mass
is simple harmonic. The time period of oscillations is,

T = 
k2

m
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Exercise - I UNSOLVED PROBLEMS
Q.1. Which of the following examples represent
periodic motion ?
(a) a swimmer completion one (return) trip from one
bank of a river to the other and back.
(b) a freely suspended bar magnet displaced from its
N-S direction and released.
(c) a hydrogen molecule rotating about its center of
mass.
(d) an arrow released from a bow.

Q.2. Which of the following examples represent
(nearly) simply harmonic motion and which represent
periodic but not simple harmonic motion?
(a) the rotation  of earth about its axis.
(b) motion of an oscillating mercury column in a U-
Tube.
(c) motion of a ball bearing  inside a smooth curved
bowl, when released from a point slightly above the
lower most point.
(d) general vibrations of a poly atomic molecule about
its equilibrium position

(a) 
t(s)

x

    (b) -3 -1 1 3
t(s)

0

x

(c) 

1 2 7 10 13
t(s)

(d) 
-3 -1 1 3

t(s)
0

x

2-2

Q.3. Figure 14,27 depicts four x-t plots for linear
motion of a particle. Which of the plots represent
periodic motion? What is the period of motion (in case
of periodic motion )?

Q.4. Which of the following function of time represent
(a) harmonic, (b) periodic but not simple harmonic,
and (c) non-periodic motion ? Give period for each
case of periodic mouton :( is any positive constant).
(a) sint–cost (b)sin3 t
(c)3cos(4–2t)
(d) cost+ cos3t+ cos 5t
(e)exp (–2t2) (f) 1 + t + 2t2

Q.5. A particle is inlinear simple harmonic motin
between tow points, A and B, 10 cm apart. Take the
directin from A to B as the positive  direction and give
the signs of velocity, accelerating and force on the
particle when it is
(a) at the end A (b) at the ent B,
(c) at the mid-point of AB going towards A.
(d) at 2 cm away from b going towards A,
(e) at 3 cm away from A going towards B, and
(f) at 4 cm away from A going towards A.

Q.6. Which of the following relationship between the
acceleration a and the displacement x of a particle
involve harmonic motion.
(a)  =0.7x (b) =200x
(C)  =10x (d)  = 100 x2

Q.7. The motion of a particle execution simple
harmonic motion is described by the displacement
function.

x(t) = A cos (t + )
If the initial ( t =0) position of the particle is 1 cm

and its initial velocity is   cm/s, what  are its
amplitude and initial phase angle ? The angular
frequency of the particle is  s-1. If  instead of the
cosine  function, we choose the sine function to
describe the SHM : x = B sin ( t + ), what are the
amplitude and initial phase of the particle with the
above initial  conditions.

Q.8. A spring balance has a scale that reads from 0
to 50 kg. The length of the scale is 20 cm. A body
suspended from this balance, when displaced and
released oscillates with a period of 0.6 s. What is the
weight of the body?

Q.9. A spring  having with a spring constant 1200 N
m-1 is mounted on a horizontal table as shown in fig.
14.28. A mass of 3 kg is attached to the free end of
the spring. The masses then pulled sideways to a
distance of 2.0 cm and released.

Determine (i) the frequency of oscillations, (ii)
maximum acceleration of the mass and (iii) the maximum
speed of the mass.

Q.10. In Exercise 14.9, let us take the position of
mass when the spring  is un stretched as x = 0, and
the direction from left to right as the positive direction
of x-axis. Give x as a function of time t for the
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oscillating mass if at the moment we start the
stopwatch (t = 0 ), the mass is
(a) at the mean position
(b) at the maximum stretched position, and
(c) at the maximum compressed position.

In what way do these function for SHM differ from
each other, in frequency, in amplitude or the initial
phase?

Q.11. Figures 14.29 correspond to two circular
motions. The radius of the circle, the period of
revolution, the initial position and the sense of
revolution (i.e. clockwise or anti- clockwise) are
indicated on each figure.

Obtain the corresponding simple harmonic motions
of the x-projection of the radius vector of the revolving
particle P, in each case.

Q.12. Plot the corresponding reference circle for each
of the following  simple harmonic motions. Indicate
the initial ( t = 0 )  position  of the particle, the radius
of the circle, and the angular speed of the rotating
particle. For simplicity, the sense of rotation  may be
fixed to be anticlockwise in every case: (x is in cm
and t is in s).
(a) x = –2 sin (3 t + / 3)
(b) x = cos (/ 6 – t)
(c) x = 3 sin ( 2t + / 3)
(d) x = 2 cos t

Q.13 Figure (i) shows a spring of force constant k
clamped rigidly at one end and a mass m attached
to its free end. A force F applied at the free end
stretches the spring. Figure (ii) shows the same
spring with both ends free and attached to a mass
m at either end. Each end of the spring in figure (ii)
is stretched by the same force F.

mk
F

(i)

mk
F

(ii)

F

m

(a) What is the maximum extension of the spring
in the two cases?
(b) If the mass in figure (i) and the two masses
in Figure (ii) are released free, what is the period
of oscillation in each case?

Q.14. Figure 14.31 shows four different spring
arrangement. If the mass in each arrangement is
displaced form its equilitbrium position and released ,
what is the resulting frequency of vibration  in each
case? Neglect the mass of the spring. [Figs. (a) and
(b) represent an arrangement of springs in parallel,
and (c) and (d) represent ‘springs in series’ ]

 

k1

(a)

k2

m

    
k1

(c)

k2

 (c)  

m

k1 k2

    (d) 

m

k1

k2

Q.15. A tray or mass 12 kg. is supported by two
indentical springs as shown in Fig. 14.32. When  the
tray is pressed down pressed down slightly and then
released, it executes SHM with a time period of 1.5 s.
What is the spring constant of each spring ? When a
block of mass m is placed on the tray, the period of
SHM changes to 3.0 s. What is the mass of the block

m
12kg

Q.16. The piston in the cylinder head of a locomotive
has a stroke ( twice the amplitude of 1.0 m. If the
piston moves with simple harmonic motion with angular
frequency of 200 rev/ min, what its maximum speed?

Q.17. The acceleration due to gravity on the surface
of moon is 1.7 m s-2. What is the time period of a
simple pendulum on the surface of moon if its time
period on the surface of earth is 3.5 s ? (g on the
surface of earth is 9.8 m s-2 )

Q.18. Answer the following questions:
(a)Time period of a particle in SHM depends on the
force constant k and mass m  of the pariticle:

T= 2
k

m
. A simple pendulum  executes SHM

approximately. Why then is the time period of a
pendulum  independent of the mass of the pendulum?
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(b) The motin of a simple pendulum  is approximately
simple  harmonic for small angle oscillations. For larger
angles of oscillation, a more involved analysis shows

that T is greater than 2 g

l
Think of a qualitative

argument to  appreciate this result.
(c) A man with a wristwatch on his hand falls from
the top of a tower. Does the watch give correct time
during the free fall?
(d) What is the frequency of osculation of a simple
pendulum mounted in a cabin  that is freely falling
under gravity?

Q.19.  A simple pendulum of lenght l  and having a
bob of mass m is suspended in a car. The car  is
moving on a circular track of radius R with a uniform
speed If the pendulum  makes small oscillations in a
radial direction about its equilibrium position, what will
be its time period ?

Q.20. A cylindrical piece of cork of base area A and
height h floats in a  liquid of density  the cork is
depressed slightly and then  released. Show that the
cork oscillates up and down simple harmonically with

a period  T = 2 g1

h




 where  is the density of cork. (

Ignore damping due to viscosity of the liquid).

Q.21. A trolley of mass 3.0 kg. as shown in Fig. 14.33,
is connected to two springs, each of spring constant
600 n m-1If the trolley is displaced from its euilibrium
position  by 5.0 cm and released, what is (a) the
period of ensuing oscillations, and (b) the maximum
sped of the trolley ? How much energy is dissipated
as heat by the time the trolley comes to rest due to
damping forces ?

Q.22. One end of a U-tube containing mercury is
connected to a suction pump and the other end to
atmosphere. A small pressure difference is maintained
between  the two column. Show that, when the
suctinpump is removed, the column of mercury in the
U-tube executes simple harmonic motion .

Q.23 An air chamber of volume V has a neck area
of cross section a into which a ball of mass m can
move up and down without any friction (figure).
Show that when the ball is pressed down a little
and released, it executes SHM. Obtain an expression
for the time period of oscillations assuming pressure-
volume variations of air to be isothermal (see figure).

                      

m
a

V

Air

Q.24. You are riding in an automobile of mass 3000
kg. Assuming that you are examining the oscillation
characteristics of its suspension system. The amplitude
of oscillation 15 cm when the entire automobile is
placed on it. Also, the amplitude of oscillation
decreases by 50% during  one complete oscillation .
Estimate the values of (a) the spring constant k and
(b) the damping constant b for the spring and shock
absorber system of one wheel, assuming that each
wheel supports 750 kg.

Q.25. A 1500 kg car carrying four 75 kg people  move
over a ‘washboard’ dirt road with corrugating 4.0 m
apart, which cause the car to bounce on its spring
suspension. The car bounces with maximum amplitude
when its speed is 20 km h-1 . The car now stops and
the four people  get out. By how much the car body
rise on its suspension owing to this decrease in mass

Q.26. Show that for a particle inlinear SHM the
average kinetic  energy over a period of oscillation
equals the average potential energy over the same
period.

Q.27. A circular disc of mass 10 kg is suspended by
a wire  attached to its centre. The wire is twisted by
rotating the disc and released. the period of  torsional
oscillations is found  to be 1.5 s. The radius of the
disc is 15 cm. Determine the torsional spring  constant
of the wire. (Torsional spring constat  is defined by
the relation j = –, where J is the restoring couple
and the angle of twist).


