AREA OF PARALLELOGRAM

AND TRIANGLES

> IMPORTANT POINTS

- Parallelograms on the same base and between the same parallels are equal in area.
- Area of a parallelogram is the product of its any side and the corresponding altitude.
- Parallelogram on the same base and having equal areas lie between the same parallels.
- If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle, is half the area of the parallelogram
- Two congruent figures having same area.

❖ EXAMPLES ❖

- **Ex.1** ABCD is a quadrilateral and BD is one of its diagonals as shown in fig. Show that ABCD is a parallelogram and find its area.
- **Sol.** Since diagonal BD intersects transversals AB and DC at B and D respectively such that

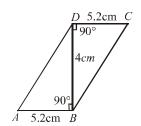
$$\angle ABD = \angle CDB$$
 [Each equal to 90°] i.e., alternate interior angles are equal.

Also, AB = DC [Each equal to 5.2 cms (Given)]

Thus, one pair of opposite sides AB and DC of quadrilateral ABCD are equal and parallel.

Hence, ABCD is a parallelogram.

Now



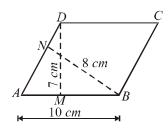
ar (
$$\parallel^{gm}$$
 ABCD) = Base × Corresponding altitude
= AB × BD = 5.2 × 4 sq.cm

- **Ex.2** In parallelogram ABCD, AB = 10 cm. The altitudes corresponding to the sides AB and AD are respectively 7 cm and 8 cm. Find AD.
- **Sol.** We have,

Area of a $\|g^m = Base \times Height$.

$$\therefore \text{ ar } (\parallel^{\text{gm}} ABCD) = AB \times DM$$
$$= (10 \times 7) \text{ cm}^2 \qquad \dots (i)$$

Also, ar (
$$\parallel$$
gmABCD) = AD × BN
= (AD × 8) cm²(ii)

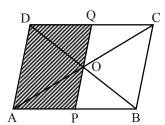


From (i) and (ii), we get

$$10 \times 7 = AD \times 8$$

$$\Rightarrow AD = \frac{10 \times 7}{8} \text{ cm} = 8.75 \text{ cm}.$$

Ex.3 In the adjoining figure, ABCD is a \parallel gm whose diagonals AC and BD intersect at O. A line segment through O meets AB at P and DC at Q. Prove that are (`APQD) = $\frac{1}{2}$ ar (\parallel gm ABCD).



Sol. Diagonal AC of ||gm ABCD divides it into two triangles of equal area.

$$\therefore \operatorname{ar}(\Delta ACD) = \frac{1}{2} \operatorname{ar}(\|\operatorname{gm} ABCD) \dots (i)$$

In \triangle OAP and OCQ, we have

$$OA = OC$$

[diagonals of a ||gm bisect each other]

$$\angle AOP = \angle COQ [vert. opp. \angle]$$

$$\angle PAO = \angle QCO [alt. int. \angle]$$

- \triangle \triangle OAP \cong \triangle OCQ
- \therefore ar(\triangle OAP) = ar(\triangle OCQ)
- \Rightarrow ar($\triangle OAP$) + ar(quad. AOQD)

$$= ar(\Delta OCQ) + ar(quad. AOQD)$$

 \Rightarrow ar(quad. APQD) = ar(\triangle ACD)

$$= \frac{1}{2} \operatorname{ar}(\|\operatorname{gm} \operatorname{ABCD}) [\operatorname{using} (i)]$$

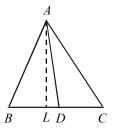
$$\therefore \operatorname{ar}(\Delta APQD) = \frac{1}{2} \operatorname{ar}(\|\operatorname{gm} ABCD)$$

- ♦ Triangles on the same base and between the same parallels are equal in area.
- The area of a triangle is half the product of any of its sides and the corresponding altitude.
- ♦ If a triangle and a parallelogram are on the same base and between the same parallels, the area of the triangle is equal to half of the parallelogram.
- The area of a trapezium is half the product of its height and the sum of parallel sides.
- Triangles having equal areas and having one side of one of the triangles equal to one side of the other, have their corresponding altitudes equal.
- **Ex.4** Show that a median of a triangle divides it into two triangles of equal area.
- **Sol.** Given: A \triangle ABC in which AD is the median.

To Prove ar $(\Delta ABD) = ar (\Delta ADC)$

Construction : Draw $AL \perp BC$.

Proof Since AD is the median of Δ ABC. Therefore,



D is the mid-point of BC.

$$\Rightarrow$$
 BD = DC

$$\Rightarrow$$
 BD × AL = DC × AL

[Multiplying both sides by AL]

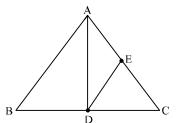
$$\Rightarrow \frac{1}{2} (BD \times AL) = \frac{1}{2} (DC \times AL)$$

$$\Rightarrow$$
 ar (\triangle ABD) = ar (\triangle ADC)

ALITER Since Δ s ABD and ADC have equal bases and the same altitude AL. Therefore, ar (Δ ABC) = ar (Δ ADC).

Ex.5 In figure, AD is a median of \triangle ABC and DE is a median of \triangle DAC. Show that

$$ar(\Delta AED) = \frac{1}{4} ar(\Delta ABC)$$



Sol. AD is a median of \triangle ABC

$$\Rightarrow$$
 ar (\triangle ABD) = ar (\triangle ACD)

$$\Rightarrow$$
 ar $(\triangle ACD) = \frac{1}{2}$ ar $(\triangle ABC)$ (1)

DE is a median of ΔDAC

$$\Rightarrow$$
 ar $(\triangle AED) = \frac{1}{2}$ ar $(\triangle ACD)$ (2)

From (1) and (2),

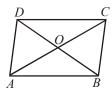
$$\operatorname{ar}(\Delta AED) = \frac{1}{2} \left\{ \frac{1}{2} \operatorname{ar}(\Delta ABC) \right\} = \frac{1}{4} \operatorname{ar}(\Delta ABC)$$

Ex.6 The diagonals of ABCD, AC and BD intersect in O. Prove that if BO = OD, the triangles ABC and ADC are equal in area.

Sol. Given: A quadrilateral ABCD in which its diagonals AC and BD intersect at O such that BO = OD.

To Prove : $ar(\Delta ABC) = ar(\Delta ADC)$

Proof: In \triangle ABD, we have BO = OD. [Given]



- \Rightarrow O is the mid-point of BD
- \Rightarrow AO is the median

$$\Rightarrow$$
 ar (\triangle AOB) = ar (\triangle AOD)(i)

[: Median divides a Δ into two Δs of equal area]

In \triangle CBD, O is the mid-point of BD.

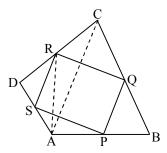
: CO is a median

$$\Rightarrow$$
 ar (\triangle COB) = ar (\triangle COD)(ii)

Adding (i) and (ii), we get

$$ar (\Delta AOB) + ar (\Delta COB) = ar(\Delta AOD) + ar(\Delta COD)$$

- \Rightarrow ar (\triangle ABC) = ar (\triangle ADC).
- Ex.7 Let P, Q, R, S be respectively the midpoints of the sides AB, BC, CD and DA of quad. ABCD. Show that PQRS is a parallelogram such that $ar(\|gm PQRS) = \frac{1}{2} ar(quad. ABCD)$.



Sol. Join AC and AR.

In $\triangle ABC$, P and Q are midpoints of AB and BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC

In ΔDAC , S and R are midpoints of AD and DC respectively.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC

Thus, $PQ \parallel SR$ and PQ = SR.

∴ PQRS is a ||gm.

Now, median AR divides \triangle ACD into two \triangle of equal area.

$$\therefore \text{ ar } (\Delta ARD) = \frac{1}{2} \text{ ar } (\Delta ACD) \quad \dots (1)$$

Median RS divides \triangle ARD into two \triangle of equal area.

$$\therefore$$
 ar $(\Delta DSR) = \frac{1}{2} \operatorname{ar} (\Delta ARD)$ (2)

From (1) and (2), we get

$$ar(\Delta DSR) = \frac{1}{4}ar(\Delta ACD)$$

Similarly, ar
$$(\Delta BQP) = \frac{1}{4} \operatorname{ar} (\Delta ABC)$$

$$\Rightarrow$$
 ar (\triangle DSR) + ar (\triangle BQP)

$$= \frac{1}{4} \left[ar \left(\Delta ACD \right) + ar \left(\Delta ABC \right) \right]$$

$$\Rightarrow$$
 ar (\triangle DSR) + ar (\triangle BQP)

$$= \frac{1}{4} \operatorname{ar} \left[\operatorname{quad. ABCD} \right) \dots (3)$$

Similarly, ar (ΔCRQ) + ar (ΔASP)

$$= \frac{1}{4} \operatorname{ar} (\operatorname{quad. ABCD}) \dots (4)$$

Adding (3) and (4), we get

$$ar(\Delta DSR) + ar(\Delta BQP) + ar(\Delta CRQ)$$

$$+ ar (\Delta ASP)$$

$$= \frac{1}{2} \operatorname{ar} (\operatorname{quad. ABCD}) \dots (5)$$

But, ar
$$(\Delta DSR)$$
 + ar (ΔBQP) + ar (ΔCRQ)

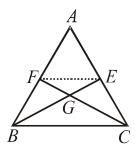
+ ar
$$(\Delta ASP)$$
 + ar $(\|gm PQRS)$

Subtracting (5) from (6), we get

$$ar(\|gmPQRS) = \frac{1}{2}ar(quad. ABCD)$$

Ex.8 The medians BE and CF of a triangle ABC intersect at G. Prove that area of Δ GBC = area of quadrilateral AFGE.

Sol. Join EF. Since the line segment Joining the mid-points of two sides of a triangle is parallel to the third side. So, EF || BC.



Clearly, $\Delta sBEF$ and CEF are on the same base EF and between the same parallel lines. So,

$$ar(\Delta BEF) = ar(\Delta CEF)$$

 \Rightarrow ar($\triangle BEF$)-ar($\triangle GEF$)

$$= ar(\Delta CEF) - ar(\Delta GEF)$$

$$\Rightarrow$$
 ar (\triangle BFG) = ar (\triangle CEG) (i)

We know that a median of a triangle divides it into two triangels of equal area.

Therefore,

$$ar(\Delta BEC) = ar(\Delta ABE)$$

$$\Rightarrow$$
 ar(ΔBGC) + ar (ΔCEG) = ar(quad. AFGE)
+ ar (ΔBFG)

$$\Rightarrow$$
 ar(\triangle BGC) + ar(\triangle BFG) = ar (quad. AFGE)

$$+ ar (\Delta BFG)$$
 [Using (i)]

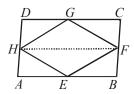
$$\Rightarrow$$
 ar (\triangle BGC) = ar (quad. AFGE)

- **Ex.9** E, F, G, H are respectively, the mid-points of the sides AB, BC, CD and DA of parallelogram ABCD. Show that the area of quadrilateral EFGH is half the area of the parallelogram ABCD.
- Sol. Given: A quadrilateral ABCD in which E, F, G, H are respectively the mid-points of the sides AB, BC, CD and DA.

To Prove:

(i) ar (
$$\parallel^{gm}$$
 EFGH) = $\frac{1}{2}$ ar (\parallel^{gm} ABCD)

Construction: Join AC and HF



Since \triangle HGF and \parallel^{gm} HDCF are on the same base HF and between the same parallel lines.

$$\therefore \text{ ar}(\Delta \text{HGF}) = \frac{1}{2} \text{ ar}(||\text{gm HDCF}) \qquad(i)$$

Similarly, ΔHEF and $\parallel^{gm} HABF$ are on the same base HF and between the same parallels.

∴ ar (
$$\Delta$$
HEF) = $\frac{1}{2}$ ar (\parallel gm HABF)(ii)

Adding (iii) and (iv), we get

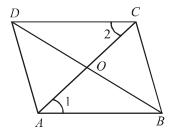
$$ar (\Delta HGF) + ar (\Delta HEF) = \frac{1}{2} [ar(\parallel^{gm} HDCF)]$$

$$\Rightarrow$$
 ar ($\|g^m EFGH$) = $\frac{1}{2}$ ar ($\|g^m ABCD$).

- **Ex.10** Two segments AC and BD bisect each other at O. Prove that ABCD is a parallelogram.
- **Sol.** Given: AC and BD are two segments bisecting each other at O.

To Prove: ABCD is a parallelogram.

Construction: Join AB, BC, CD and DA.



Proof : In Δ s AOB and COD, we have

$$AO = CO$$
 [Given]
 $BO = DO$ [Given]

and,
$$\angle AOB = \angle COD$$
 [Vertically opp. $\angle s$]

So, by SAS criterion of congruence

$$\triangle AOB \cong \triangle COD$$

⇒ AB = CD [: Corresponding parts of congruent triangles are equal]

and,
$$\angle 1 = \angle 2$$
.

Thus, AB and DC intersect AC at A and C respectively such that $\angle 1 = \angle 2$ i.e. alternate interior angles are equal.

Thus, in quadrilateral ABCD, we have

$$AB = DC$$
 and $AB \parallel DC$

i.e. a pair of opposite sides are equal and parallel. Hence, ABCD is a parallelogram.

Hence, ABCD is a parallelogram.

- Ex.11 ABCD is a parallelogram. L and M are points on AB and DC respectively and AL = CM. Prove that LM and BD bisect each other.
- **Sol.** We have, AL = CM

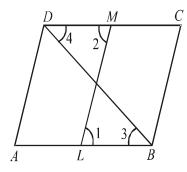
$$\Rightarrow$$
 AB – BL = CD – DM

$$\Rightarrow$$
 -BL = -DM [:: ABCD is a \parallel^{gm}

$$\therefore AB = DC$$

$$\Rightarrow$$
 BL = DM (i)

Now, $AB \parallel DC$ and transversals BD and LM intersect them.



$$\therefore$$
 $\angle 3 = \angle 4$ and $\angle 1 = \angle 2$ (ii)

Thus, in Δ s OBL and ODM, we have

$$\angle 1 = \angle 2$$
 [From (ii)]

$$BL = MD$$
 [From (i)]

$$\angle 3 = \angle 4$$
 [From (ii)]

So, by ASA criterion of congruence

$$\Delta OBL \cong \Delta ODM$$

$$\Rightarrow$$
 OB = OD and OL = OM

: Corresponding parts of congruent triangles are equal

- \Rightarrow O is the mid-point of BD and LM both.
- ⇒ BD and LM bisect each other.

- **Ex.12** A point O inside a rectangle ABCD is joined to the vertices. Prove that the sum of the areas of a pair of opposite triangles so formed is equal to the sum of the other pair of triangles.
- **Sol.** Given: A rectangle ABCD and O is a point inside it, OA, OB, OC and OD have been joined.

To Prove : ar (ΔAOD) + ar (ΔBOC)

= ar
$$(\Delta AOB)$$
 + ar (ΔCOD) .

Construction: Draw EOF|| AB and LOM || AD.

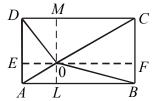
Proof: We have,

$$ar (\Delta AOD) + ar (\Delta BOC)$$

$$= \frac{1}{2} (AD \times OE) + \frac{1}{2} (BC \times OF)$$

$$= \frac{1}{2} (AD \times OE) + \frac{1}{2} (AD \times OF) [::AD = BC]$$

$$= \frac{1}{2} (AD \times (OE + OF))$$



$$= \frac{1}{2} (AD \times EF)$$

$$= \frac{1}{2} (AD \times AB) \qquad [:: EF = AB]$$

$$=\frac{1}{2}$$
 ar (rect ABCD) and,

 $ar(\Delta AOB) + ar(\Delta COD)$

$$= \frac{1}{2} (AB \times OL) + \frac{1}{2} (CD \times OM) \frac{1}{2}$$

=
$$(AB \times OL) + \frac{1}{2}(AB \times OM)$$
 [: AB = CD]

$$=\frac{1}{2}AB\times(OL+OM)$$

$$= \frac{1}{2} (AB \times LM) \qquad [\because LM = AD]$$

$$\frac{1}{2} = (AB \times AD) = \frac{1}{2} \text{ ar (rect ABCD)}$$

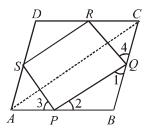
$$\therefore$$
 ar (\triangle AOD) + ar (\triangle BOC)

=
$$ar(\Delta AOB)$$
+ $ar(\Delta COD)$

- **Ex.13** ABCD is a rhombus and P, Q, R, S are the mid-points of AB, BC, CD, DA respectively. Prove that PQRS is a rectangle.
- **Sol.** Given: A rhombus `ABCD in which P, Q, R, S are the mid-points of sides AB, BC, CD and DA respectively. PQ, QR, RS and SP are joined.

To Prove: `PQRS is rectangle.

Construction: Join AC.



Proof: In order to prove that PQRS is a rectangle, it is sufficient to show that it is a parallelogram whose one angle is a right angle. First we shall prove that PQRS is parallelogram.

In $\triangle ABC$, P and Q are the mid-points of AB and BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC(i)

In $\triangle ADC$, R and S are the mid-points of CD and AD respectively.

$$\therefore RS \parallel AC \text{ and } RS = \frac{1}{2} AC \qquad(ii)$$

From (i) and (ii), we have

$$PO \parallel RS \text{ and } PO = RS$$

Thus, PQRS is a quadrilateral such that one pair of opposite sides PQ and SR is equal and parallel.

So, PQRS is a parallelogram.

Now, we shall prove that one angle of parallelogram PQRS is a right angle.

ABCD is a rhombus

$$\Rightarrow$$
 AB = BC

[: All sides of a rhombus are equal]

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC$$

$$\Rightarrow PB = BQ \qquad(i)$$

$$\begin{bmatrix} \therefore P \text{ and } Q \text{ are the mid - po ints} \\ \text{of } AB \text{ and } BC \text{ respectively} \end{bmatrix}$$

Now, in $\triangle PBQ$ we have,

$$PB = BQ$$

$$\Rightarrow \angle 1 = \angle 2$$
(ii)

Again, ABCD is a rhombus

$$\Rightarrow$$
 AB = BC = CD = AD

$$\Rightarrow$$
 AB = BC, CD = AD

$$\Rightarrow \frac{1}{2} AB = \frac{1}{2} BC, \frac{1}{2} CD = \frac{1}{2} AD$$

$$\Rightarrow$$
 AP = CQ, CR = AS(iii)

Now, in \triangle s APS and COR, we have

$$AP = CQ$$
 [From (iii)]

$$AS = CR$$
 [From (iii)]

and
$$PS = QR$$
 [: PQRS is ||gm : PS = QR]

So, by SSS criterion of congruence

$$\Delta APS \cong \Delta CQR$$

$$\Rightarrow \angle 3 = \angle 4$$
(iv)

: Corresponding parts of congruent triangles are equal

and $\angle 3 = \angle 4$, from (iv)

Now,
$$\angle 3 + \angle SPQ + \angle 2 = 180^{\circ}$$

and, $\angle 1 + \angle PQR + \angle 4 = 180^{\circ}$

$$\therefore$$
 $\angle 3 + \angle SPQ + \angle 2 = \angle 1 + \angle PQR + \angle 4$

$$\Rightarrow \angle SPQ = \angle PQR \qquad ...(v)$$

$$\lceil \because \angle 1 = \angle 2, \text{ from (ii) } \rceil$$

Now, transversal PQ cuts parallel lines SP and RQ at P and Q respectively.

$$\therefore \angle SPQ + \angle PQR = 180^{\circ}$$

$$\Rightarrow \angle SPQ + \angle SPQ = 180^{\circ}$$
 [Using (v)]

$$\Rightarrow \angle SPO = 90^{\circ}$$

Thus, PQRS is a parallelogram such that $\angle SPO = 90^{\circ}$.

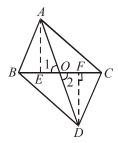
Hence, PQRS is a rectangle.

- **Ex.14** Triangles ABC and DBC are on the same base BC with A, D on opposite sides of line BC, such that ar $(\Delta ABC) = ar (\Delta DBC)$. Show that BC bisects AD.
- Sol. Since Δs ABC and DBC are equal in area and have a common side BC. Therefore the altitudes corresponding to BC are equal i.e.

$$AE = DF$$
.

Now, in Δ s AEO and DFO, we have

$$\angle 1 = \angle 2$$
 [Vertically opp. angles]
 $\angle AEO = \angle DFO$ [Each equal to 90°]
and, $AE = DF$



So, by AAS criterion of congruence,

$$\Delta AEO \cong \Delta DFO$$

$$\Rightarrow$$
 AO = DO

Ex.15 ABCD is a parallelogram and O is any point in its interior. Prove that:

(i)
$$ar(\Delta AOB) + ar(\Delta COD) = \frac{1}{2} ar(\parallel^{gm} ABCD)$$

(ii) ar
$$(\Delta AOB)$$
 + ar $\Delta (COD)$

=
$$ar (\Delta BOC) + ar (\Delta AOD)$$

- **Sol.** Given: A parallelogram ABCD and O is a point in its interior.
 - (i) Since ΔAOB and parallelogram ABFE are on the same base AB and between the same parallel lines AB and EF.

$$\therefore \text{ ar } (\Delta AOB) = \frac{1}{2} \text{ ar } (\|gm \text{ ABFE}) \qquad(i)$$

Similarly,

$$\operatorname{ar}(\Delta COD) = \frac{1}{2}\operatorname{ar}(\|g^{m} DEFC)$$
(ii)

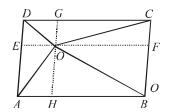
Adding (i) and (ii), we get ar
$$(\Delta AOB)$$
 + ar (ΔCOD)

$$= \frac{1}{2} \operatorname{ar} (\parallel^{gm} ABCD)$$

(ii) To Prove: $ar(\Delta AOB) + ar(\Delta COD)$

= ar (
$$\triangle BOC$$
) + ar ($\triangle AOD$).

Construction: Draw EOF ||AB and GOH || AD.



Proof: Since GH || DE and EF || DC

⇒ EOGD is a parallelogram

Similarly, EAHO, HBFO and FOGC are parallelograms.

Now, OD is a diagonal of parallelogram EOGD

$$\Rightarrow$$
 ar ($\triangle EOD$) = ar ($\triangle DOG$) (iii)

OA is a diagonal of parallelogram EAHO

$$\Rightarrow$$
 ar ($\triangle EOA$) = ar ($\triangle AOH$)(iv)

OB is a diagonal of parallelogram HBFO

$$\Rightarrow$$
 ar (\triangle BOF) = ar (\triangle BOH)(v)

OC is a diagonal of parallelogram FOGC

$$\Rightarrow$$
 ar (\triangle FOC) = ar (\triangle COG)

Adding (iii), (iv) and (v), we get

ar (
$$\triangle$$
EOD) + ar (\triangle EOA) + ar (\triangle BOF)
+ ar(\triangle FOC)

=
$$ar (\Delta DOG) + ar (\Delta AOH) + ar (\Delta BOH)$$

$$+ ar (\Delta COG)$$

$$\Rightarrow$$
 ar ($\triangle AOD$) + ar ($\triangle BOC$)

$$= ar (\Delta AOB) + ar (\Delta COD)$$

- **Ex.16** A quadrilateral ABCD is such that diagonal BD divides its area in two equal parts. Prove that BD bisects AC.
- **Sol.** Given: A quadrilateral ABCD in which diagonal BD bisects it, i.e.

$$ar(\Delta ABD) = ar(\Delta BDC)$$

Construction: Join AC.

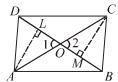
Suppose AC and BD intersect at O. Draw $AL \perp BD$ and $CM \perp BD$.

To Prove : AO = OC.

Proof: We have, ar $(\Delta ABD) = ar(\Delta BDC)$

Thus, Δs ABD and ABC are on the same base AB and have equal area. Therefore, their corresponding altitudes are equal.

i.e., AL = CM



Now, in Δ s ALO and CMO, we have

$$\angle 1 = \angle 2$$
 [Vertically opposite angles]

$$\angle ALO = \angle CMO$$

[Each equal to 90°]

and.
$$AL = CM$$

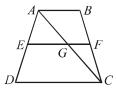
[Proved above]

So, by AAS criterion of congruence

$$\Delta$$
 ALO \cong Δ CMO

 \Rightarrow AO = OC \Rightarrow BD bisects AC.

Ex.17 In Fig. ABCD is a trapezium in which side AB is parallel to side DC and E is the midpoint of side AD. If F is a point on the side BC such that the segment EF is parallel to side DC.



Prove that $EF = \frac{1}{2} (AB + DC)$.

Sol. Given: A trapezium ABCD in which AB || DC, E is the mid-point of AD and F is a point on BC such that EF || DC.

To Prove:
$$EF = \frac{1}{2} (AB + DC)$$

Proof: In $\triangle ADC$, E is the mid-point of AD and EG \parallel DC (Given)

:. G is the mid-point of AC

Since segment joining the mid-points of two sides of a triangle is half of the third side.

$$\therefore EG = \frac{1}{2}DC \qquad(i)$$

Now, ABCD is a trapezium in which AB || DC.

But, EF || DC

∴ EF || AB

 \Rightarrow GF || AB

In $\triangle ABC$, G is the mid-point of AC (proved above) and EF \parallel AB.

:. F is the mid-point of BC

$$\Rightarrow$$
 GF = $\frac{1}{2}$ AB(iii)

 $\begin{bmatrix} \therefore \text{ Segment joining the mid - points of two sides of a } \Delta \text{ is half of the third sides} \end{bmatrix}$ From (i) and (ii), we have

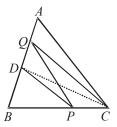
EG + GF =
$$\frac{1}{2}$$
 (DC) + $\frac{1}{2}$ (AB)

$$\Rightarrow$$
 EF = $\frac{1}{2}$ (AB + DC)

Ex.18 In \triangle ABC, D is the mid-point of AB. P is any point of BC. CQ || PD meets AB in Q. Show that ar $(\triangle$ BPQ $) = \frac{1}{2}$ ar $(\triangle$ ABC).

Sol. To Prove: ar
$$(\Delta BPQ) = \frac{1}{2}$$
 ar (ΔABC)

Construction: Join CD.



Proof: Since D is the mid-point of AB. So, in \triangle ABC, CD is the median.

$$\operatorname{ar}(\Delta BCD) = \frac{1}{2} \operatorname{ar}(\Delta ABC)$$
 (i)

Since ΔsPDQ and PDC are on the same base PD and between the same parallel lines PD and QC.

$$\therefore$$
 ar(\triangle PDQ) = ar (\triangle PDC)(ii)

Now, from (i)

$$ar(\Delta BCD) = \frac{1}{2}ar(\Delta ABC)$$

$$\Rightarrow$$
 ar (\triangle BPD) + ar (\triangle PDC) = $\frac{1}{2}$ ar (\triangle ABC)

$$\Rightarrow$$
 ar (ΔBPD) + ar (ΔPDQ) = $\frac{1}{2}$ ar (ΔABC)

[Using (ii)]

$$\Rightarrow$$
 ar (\triangle BPQ) = $\frac{1}{2}$ ar (\triangle ABC)

- **Ex.19** If the medians of a \triangle ABC intersect at G, show that $ar(\triangle AGB) = ar(\triangle AGC)$ $= ar(\triangle BGC) = \frac{1}{3}ar(\triangle ABC).$
- **Sol.** Given: A \triangle ABC such that its medians AD, BE and CF intersect at G.

To Prove : ar
$$(\Delta \text{ AGB}) = \text{ar } (\Delta \text{ BGC})$$

= ar $(\text{CGA}) = \frac{1}{3} \text{ ar } (\Delta \text{ ABC})$

Proof: We know that the median of a triangle divides it into two triangles of equal area.

In \triangle ABC, AD is the median

$$\Rightarrow$$
 ar (\triangle ABD) = ar (\triangle ACD) (i)

In \triangle GBC, GD is the median

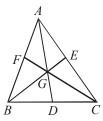
$$\Rightarrow$$
 ar (\triangle GBD) = ar (\triangle GCD)(ii)

Subtracting (ii) from (i), we get

$$ar(\Delta ABD) - ar(\Delta GBD) = ar(\Delta ACD) - ar(\Delta GCD)$$

$$\Rightarrow$$
 ar (\triangle AGB) = ar (\triangle AGC)(iii)

Similarly,



$$ar (\Delta AGB) = ar (\Delta BGC)$$
(iv)

From (iii) and (iv), we get

$$ar(\Delta AGB) = ar(\Delta BGC) = ar(\Delta AGC)$$
(v)

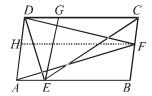
But, ar
$$(\Delta AGB)$$
 + ar (ΔBGC) + ar (ΔAGC) = ar (ΔABC)

$$\therefore$$
 3 ar (\triangle AGB) = ar (\triangle ABC)

$$\Rightarrow$$
 ar $(\Delta AGB) = \frac{1}{3}$ ar (ΔABC)

Hence, ar
$$(\triangle AGB)$$
 = ar $(\triangle AGC)$ = ar $(\triangle BGC)$
= $\frac{1}{3}$ ar $(\triangle ABC)$.

- **Ex.20** In a parallelogram ABCD, E, F are any two point on the sides AB and BC respectively. Show that ar $(\Delta ADF) = ar (\Delta DCE)$.
- **Sol.** Construction: Draw EG || AD and FH || AB.



Proof: Since FH || AB (by construction). Therefore, ABFH is a parallelogram.

Now, AF is a diagonal of ||gm ABFH

$$\therefore \text{ ar } (\Delta AFH) = \frac{1}{2} \operatorname{ar}(\|g^{m} ABFH) \qquad \dots (i)$$

In ||gm DCFH, DF is a diagonal.

$$\therefore \text{ ar}(\Delta \text{DFH}) = \frac{1}{2} \text{ ar}(\|\text{gm DCFH}) \qquad \dots \text{(ii)}$$

From (i) and (ii), we have

$$ar (\Delta AFH) + ar(\Delta DFH)$$

$$=\frac{1}{2} \operatorname{ar} (\|g^{m} ABFH) + \frac{1}{2} \operatorname{ar} (\|g^{m} DCFH)$$

$$\Rightarrow$$
 ar (\triangle AFH) + ar (\triangle DFH)

$$= \frac{1}{2} [ar (||gm| ABFH) + (ar (||gm| DCFH))]$$

$$\Rightarrow$$
 ar(\triangle AFH) + ar(\triangle DFH) = $\frac{1}{2}$ ar (\parallel gm ABCD)

$$\Rightarrow$$
 ar($\triangle ADF$) = $\frac{1}{2}$ ar($\parallel gm \ ABCD$)(iii)

In ||gm AEGD, DE is a diagonal.

$$\therefore \text{ ar}(\Delta DEG) = \frac{1}{2} \text{ ar } (\parallel^{\text{gm}} AEGD) \qquad \dots \text{(iv)}$$

In ||gm CBEG, CE is a diagonal.

$$\therefore \operatorname{ar}(\Delta \operatorname{CEG}) = \frac{1}{2} \operatorname{ar} (\|\operatorname{gm} \operatorname{CBEG}) \qquad \dots (v)$$

From (iv) and (v), we have

$$ar (\Delta DEG) + ar (\Delta CEG)$$

=
$$\frac{1}{2}$$
 ar ((||gm AEGD) + $\frac{1}{2}$ ar ((||gm CBEG)

$$\Rightarrow$$
 ar (\triangle DEG) + ar (\triangle CEG)

$$= \frac{1}{2} \left[\operatorname{ar} \left(\| \mathbf{g}^{\mathbf{m}} \operatorname{AEGD} + \frac{1}{2} \operatorname{ar} \left(\| \mathbf{g}^{\mathbf{m}} \operatorname{CBEG} \right) \right] \right]$$

$$\Rightarrow \operatorname{ar}(\Delta DEG) + \operatorname{ar}(\Delta CEG) = \frac{1}{2} \left[\operatorname{ar}(\|g^{m} ABCD) \right]$$

$$\Rightarrow$$
 ar ($\triangle DCE$) = $\frac{1}{2}$ ar ($||gm| ABCD$)(vi)

From (iii) and (vi), we get

$$ar(\Delta ADF) = ar(\Delta DCE).$$

Ex.21 In Fig. PQRS is a parallelogram, PQ and QO are respectively, the angle bisectors of ∠P and ∠Q. Line LOM is drawn parallel to PQ. Prove that:

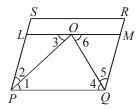
(i)
$$PL = QM$$

(ii)
$$LO = OM$$
.

Sol. Since PQRS is a parallelogram.

$$\therefore$$
 PS || QR \Rightarrow PL || QM

Thus, we have



 $PL \parallel QM$ and $LM \parallel PQ$

[Given]

- ⇒ PQML is parallelogram.
- \Rightarrow PL=QM [: Opp. sides of a || gm are equal]

This proves (i).

Now, OP is the bisector of $\angle P$

$$\therefore$$
 $\angle 1 = \angle 2$ (i)

Now, PQ \parallel LM and transversal OP intersects them

....(ii)

From (i) and (ii), we get

$$\angle 2 = \angle 3$$

Thus, in $\triangle OPL$, we have

$$\angle 2 = \angle 3$$

$$\Rightarrow$$
 OL = PL ...(iii)

: Opposite sides of equal angles in triangle are equal

Since OQ is the bisector of $\angle Q$

$$\therefore$$
 $\angle 4 = \angle 5$ (iv)

Also, PQ \parallel LM and transversal OQ intersects them

$$\angle 4 = \angle 6$$
(v)

From (iv) and (v), we get

$$\angle 5 = \angle 6$$

Thus, in $\triangle OQM$, we have

$$\angle 5 = \angle 6$$

$$\Rightarrow$$
 OM = OM(vi)

[: Opp. sides of equal angles are equal]

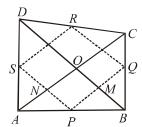
But, PL = QM(vii) [As proved above]

So, from (iii), (vi) and (vii), we get

$$OL = OM$$
.

- **Ex.22** The diagonals of a quadrilateral ABCD are perpendicular. Show that the quadrilateral, formed by joining the mid-points of its sides, is a rectangle.
- Sol. Given: A quadrilateral whose diagonals AC and BD are perpendicular to each other, P, Q, R, S are the mid-points of sides AB, BC, CD and DA respectively. PQ, QR, RS and SP are joined.

To Prove: PQRS is a rectangle.



Proof: In $\triangle ABC$, P and Q are the mid-points of AB and BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC (i)

In \triangle ADC, R and S are the mid-points of CD and AD respectively.

$$\therefore$$
 RS || AC and RS = $\frac{1}{2}$ AC(ii)

From (i) and (ii), we have

$$PQ \parallel RS$$
 and $PQ = RS$

Thus, in quadrilateral PQRS, a pair of opposite sides are equal and parallel. So, PQRS is a parallelogram.

Suppose the diagonals AC and BD of quadrilateral ABCD intersect at O.

Now in \triangle ABD, P is the mid-point of AB and S is the mid-point of AD.

$$\therefore$$
 PS || BD \Rightarrow PN || MO

Also, from (i) , PQ \parallel AC

 \Rightarrow PM || NO

Thus, in quadrilateral PMON, we have

- ⇒ PMON is a parallelogram.
- $\Rightarrow \angle MPN = \angle MON$

[: Opposite angles of a ||gm are equal]

$$\Rightarrow \angle MPN = \angle BOA \quad [\because \angle BOA = \angle MON]$$

$$\Rightarrow \angle MPN = 90^{\circ} [::AC \perp BD :: \angle BOA = 90^{\circ}]$$

$$\Rightarrow \angle QPS = 90^{\circ}$$
 [:: $\angle MPN = \angle QPS$]

Thus, PQRS is a parallelogram whose one angle \angle QPS = 90° Hence PQRS is a rectangle.

- Ex.23 In a parallelogram ABCD diagonals AC and BD intersect at O and AC = 6.8cm and BD = 13.6 cm. Find the measures of OC and CD.
- **Sol.** Since the diagonals of a parallelogram bisect each other. Therefore, O is the mid-point of AC and BD.

$$\therefore$$
 OC = $\frac{1}{2}$ AC = $\frac{1}{2}$ × 6.8 cm = 3.4 cm

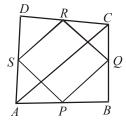
and, OD =
$$\frac{1}{2}$$
 BD = $\frac{1}{2}$ × 5.6 cm = 2.8 cm

Ex.24 Prove that the figure formed by joining the mid-points of the pairs of consecutive sides of a quadrilateral is a parallelogram.

Sol. Given: ABCD is a quadrilateral in which P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively.

To Prove: PQRS is a parallelogram.

Construction: Join A and C.



Proof: In \triangle ABC, P and Q are the mid-points of sides AB and BC respectively.

$$\therefore PQ \parallel AC \text{ and } PQ = \frac{1}{2} AC \qquad \dots (i)$$

In \triangle ADC, R and S are the mid-points of CD and AD respectively.

$$\therefore RS \parallel AC \text{ and } RS = \frac{1}{2}AC \qquad \dots (ii)$$

From (i) and (ii), we have

$$PQ = RS$$
 and $PQ \parallel RS$

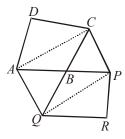
Thus, in quadrilateral PQRS one pair of opposite sides are equal and parallel.

Hence, PQRS is a parallelogram.

Ex.25 The side AB of a parallelogram ABCD is produced to any point P. A line through A parallel to CF meets CB produced in Q and the parallelogram PBQR completed.

Show that ar ($\|gm ABCD\|$) = ar ($\|gm BPRQ\|$).

Sol. Construction: Join AC and PQ.



To prove: ar ($\|g^m ABCD$) = ar($\|g^m BPRQ$)

Proof: Since AC and PQ are diagonals of parallelograms ABCD and BPQR respectively.

$$\therefore \text{ ar } (\Delta ABC) = \frac{1}{2} \text{ ar } (\|g^{m} ABCD) \qquad \dots (i)$$

and, ar
$$(\Delta PBQ) = \frac{1}{2}$$
 ar $(\parallel^{gm} BPRQ)$ (ii)

Now, Δs ACQ and AQP are on the same base AQ and between the same parallels AQ and CP

$$\therefore$$
 ar(\triangle ACQ) = ar (\triangle AQP)

$$\Rightarrow$$
 ar($\triangle ACQ$) – ar ($\triangle ABQ$)

$$= ar (\Delta AQP) - ar(\Delta ABQ)$$

[Subtracting ar (\triangle ABQ) from both sides]

$$\Rightarrow$$
 ar (\triangle ABC) = ar (\triangle BPQ)

$$\Rightarrow \frac{1}{2} \operatorname{ar} (\|^{gm} \operatorname{ABCD}) = \frac{1}{2} \operatorname{ar} (\|^{gm} \operatorname{BPRQ})$$

[Using (i) and (ii)]

$$\Rightarrow$$
 ar($\|g^{m} ABCD$) = ar($\|g^{m} BPRQ$).

- **Ex.26** In a parallelogram ABCD, the bisector of $\angle A$ also bisects BC at X. Prove that AD = 2AB.
- **Sol.** Since AX is the bisector of $\angle A$.

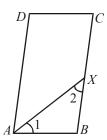
$$\therefore \angle 1 = \frac{1}{2} \angle A \qquad \dots (i)$$

Since ABCD is a parallelogram.

Therefore, AD || BC and AB intersects them.

$$\Rightarrow \angle A + \angle B = 180^{\circ}$$

[: Sum of interior angles is 180°]



$$\Rightarrow \angle B = 180^{\circ} - \angle A$$

In $\triangle ABX$, we have

$$\angle 1 + \angle 2 + \angle B = 180^{\circ}$$

$$\Rightarrow \frac{1}{2} \angle A + \angle 2 + 180^{\circ} - \angle A = 180^{\circ}$$

$$\Rightarrow \angle 2 - \frac{1}{2} \angle A = 0$$

$$\Rightarrow \angle 2 = \frac{1}{2} \angle A$$
(ii)

From (i) and (ii), we have

$$\angle 1 = \angle 2$$
.

Thus, in $\triangle ABX$, we have

$$\angle 1 = \angle 2$$
.

 \Rightarrow BX = AB [: Sides opposite to equal angles in a \triangle are equal]

 \Rightarrow 2BX = 2AB [Multiplying both sides by 2]

 \Rightarrow BC = 2AB [:: X is the mid-point of BC

$$\therefore AD = BC$$

 \Rightarrow AD = 2AB

[: ABCD is a
$$\parallel^{gm}$$
 : AD = BC]

Ex.27 In Fig. BC \parallel XY, BX \parallel CA and AB \parallel YC. Prove that:

$$ar(\Delta ABX) = ar(\Delta ACY).$$

Sol. Join XC and BY.

Since Δs BXC and BCY are on the same base BC and between the sum parallels BC and XY

$$\therefore$$
 ar($\triangle BXC$) = ar($\triangle BCY$) (i)



Also, Δs BXC and ABX are on the same base BX and between the same parallels BX and AC.

$$\therefore$$
 ar $(\Delta BXC) = ar (\Delta ABX)$ (ii)

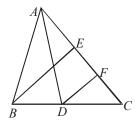
Clearly, $\Delta sBCY$ and ACY are on the same base CY and between the same parallels AB and CY.

$$\therefore$$
 ar(\triangle BCY) = ar (\triangle ACY)(iii)

From (i), (ii) and (iii), we get

$$ar(\Delta ABX) = ar(\Delta ACY)$$
.

Ex.28 In Fig. AD and BE are medians of $\triangle ABC$ and BE \parallel DF.



Prove that $CF = \frac{1}{4}AC$

Sol. In ΔBEC, DF is a line through the mid-point D of BC and parallel to BE intersecting CE at F. Therefore, F is the mid-point of CE. Because the line drawn through the mid-point of one side of a triangle and parallel to another side bisects the third side.

Now, F is the mid-point of CE

$$\Rightarrow$$
 CF = $\frac{1}{2}$ CE

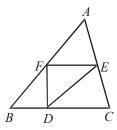
$$\Rightarrow \text{ CF} = \frac{1}{2} \left(\frac{1}{2} AC \right) \begin{bmatrix} \because \text{ E is the mid - po int} \\ \text{of AC} \therefore \text{ EC} = \frac{1}{2} AC \end{bmatrix}$$

$$\Rightarrow$$
 CF = $\frac{1}{4}$ AC

Ex.29 D, E, F are the mid-points of the sides BC, CA and AB respectively of \triangle ABC, prove that BDEF is a parallelogram whose area is half that of \triangle ABC. Also, show that

ar (
$$\triangle DEF$$
) = $\frac{1}{4}$ are ($\triangle ABC$).

Sol. Since D and E are the mid-points of sides BC and AC respectively.



Therefore, DE \parallel BA \Rightarrow DE \parallel BF

Similarly, FE || BD. So, BDEF is a parallelogram. Similarly, DCEF and AFDE are parallelograms.

Now, DF is a diagonal of ||gm BDEF.

$$\therefore$$
 ar ($\triangle BDF$) = ar ($\triangle DEF$) (i)

DE is a diagonal of ||gm DCEF

$$\therefore$$
 ar ($\triangle DCE$) = ar ($\triangle DEF$)(ii)

FE is a diagonal of ||gm AFDE

$$\therefore$$
 ar (\triangle AFE) = ar (\triangle DEF)(iii)

From (i), (ii) and (iii), we have

ar
$$(\Delta BDF)$$
 = ar (ΔDCE) = ar (ΔAFE) = ar (ΔDEF)

But, $ar(\Delta BDF) + ar(\Delta DCE) + ar(\Delta AFE)$

$$+ ar (\Delta DEF) = ar (\Delta ABC)$$

$$\therefore$$
 4 ar (\triangle DEF) = ar (\triangle ABC)

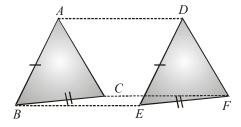
$$\Rightarrow$$
 ar (\triangle DEF) = $\frac{1}{4}$ ar (\triangle ABC).

Now, ar ($\|g^m BDEF\| = 2$ ar (ΔDEF)

$$\Rightarrow$$
 ar (||gm BDEF) = 2 × $\frac{1}{4}$ ar(ΔABC)
= $\frac{1}{2}$ ar (ΔABC)

- Ex.30 ΔABC and ΔDEF are two triangles such that AB, BC are respectively equal and parallel to DE, EF; show that AC is equal and parallel to DF.
- Sol. Given: Two triangles ABC and DEF such that AB = DE and $AB \parallel DE$. Also BC = EF and $BC \parallel EF$

To Prove: AC = DF and $AC \parallel DF$



Proof: Consider the quadrilateral ABED.

We have, AB = DE and $AB \parallel DE$

- ⇒ One pair of opposite sides are equal and parallel
- ⇒ ABED is a parallelogram.

$$\Rightarrow$$
 AD = BE and AD || BE(i)

Now, consider quadrilateral BCFE.

We have, BC = EF and $BC \parallel EF$

- ⇒ One pair of opposite sides are equal and parallel
- \Rightarrow BCFE is a parallelogram.

$$\Rightarrow$$
 CF = BE and CF || BE(ii)

From (i) and (ii), we have

$$AD = CF$$
 and $AD \parallel CF$

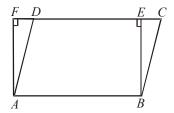
⇒ ACFD is a parallelogram

$$AC = DF$$
 and $AC \parallel DF$

- **Ex.31** Parallelogram ABCD & rectangle ABEF have the same base AB and also have equal areas. Show that perimeter of the parallelogram is greater than that of the rectangle.
- **Sol.** Given: A \parallel^{gm} ABCD and a rectangle ABEF with the same base AB and equal areas.

To Prove: Perimeter of ||gm ABCD > Perimeter of rectangle ABEF

i.e. AB+BC+CD+AD>AB+BE+EF+AF.



Proof: Since opposite sides of a parallelogram and a rectangle are equal.

$$\therefore$$
 AB = DC $[\because ABCD \text{ is a } ||gm]$

and, AB = EF [: ABEF is a rectangle]

$$\therefore$$
 DC = EF (i)

$$\Rightarrow$$
 AB + DC = AB + EF(ii

Since, of all the segments that can be drawn to a given line from a point not lying on it, the perpendicular segment is the shortest.

$$\therefore$$
 BE \Rightarrow BC > BE and AD > AF

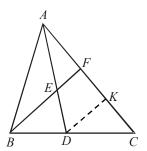
$$\Rightarrow$$
 BC + AD > BE + AF(iii)

Adding (ii) and (iii), we get

$$AB + DC + BC + AD > AB + EF + BE + AF$$

$$\Rightarrow$$
 AB + BC + CD + DA > AB + BE + EF + FA.

- Ex.32 In \triangle ABC, AD is the median through A and E is the mid-point of AD. BE produced meets AC in F. Prove that AF = $\frac{1}{3}$ AC.
- **Sol.** Through D, draw DK \parallel BF. In \triangle ADK, E is the mid-point of AD and EF \parallel DK.



.. F is the mid-point of AK

$$\Rightarrow$$
 AF = FK (i)

In $\Delta BCF,\ D$ is the mid-point of BC and $DK\parallel BF$

:. K is the mid-point of FC

$$\therefore FK = KC \qquad \dots (ii)$$

From (i) and (ii), we have

$$AF = FK = KC$$
(iii)

Now, AC = AF + FK + KC

$$\Rightarrow$$
 AC = AF + AF + AF [Using (iii)]

$$\Rightarrow$$
 AC = 3 (AF)

$$\Rightarrow$$
 AF = $\frac{1}{3}$ AC

IMPORTANT POINTS TO BE REMEMBERED

- 1. Two figures are said to be on the same base and between the same parallels, if they have a common side (base) and the vertices (or the vertex) opposite to the common base of each figure lie on a line parallel to the base.
- 2. Two congruent figures have equal areas but the converse need not be true.
- 3. A diagonal of a parallelogram divides it into two triangles of equal area.
- **4.** Parallelograms on the same base and between the same parallels are equal in area.
- 5. The area of a parallelogram is the product of its base and the corresponding altitude.
- **6.** Parallelograms on equal bases and between the same parallels are equal in area.
- 7. Triangles on the same bases and between the same parallels are equal in area.
- **8.** The area of a triangle is half the product of any of its sides and the corresponding altitude.
- 9. If a triangle and a parallelogram are on the same base and between the same parallels, then the area of the triangle is equal to the half of the parallelogram.
- 10. The area of a trapezium is half the product of its height and the sum of parallel sides.
- 11. Triangles having equal areas and having one side of one of the triangles, equal to one side of the other, have their corresponding altitudes equal.
- 12. If each diagonal of a quadrilateral separates it into two triangles of equal area, then the quadrilateral is a parallelogram.
- 13. The area of a rhombus is half the product of the lengths of its diagonals.
- **14.** Diagonals of a parallelogram divide it into four triangles of equal area.
- **15.** A median of a triangle divides it into two triangles of equal area.