

## **1. EQUATION OF STRAIGHT LINE**

A relation between x and y which is satisfied by co-ordinates of every point lying on a line is called the equation of Straight Line. Every linear equation in two variable x and y always represents a straight line.

eg. 3x + 4y = 5, -4x + 9y = 3 etc. General form of straight line is given by ax + by + c = 0.

## 2. EQUATION OF STRAIGHT LINE PARALLEL TO AXES

(i) Equation of x axis ⇒ y = 0. Equation a line parallel to x axis (or perpendicular to y axis) at a distance 'a' from it ⇒ y = a.

(ii) Equation of y axis  $\Rightarrow x = 0$ .

Equation of a line parallel to y axis (or perpendicular to x axis) at a distance 'a' from it  $\Rightarrow$  x = a.

eg. Equation of a line which is parallel to x-axis and at a distance of 4 units in the negative direction is y = -4.

## **3. SLOPE OF A LINE**

If  $\theta$  is the angle made by a line with the positive direction of x axis in anticlockwise sense, then the value of tan $\theta$  is called the Slope (also called gradient) of the line and is denoted by m or slope = tan  $\theta$ 

eg. A line which is making an angle of  $45^{\circ}$  with the x-axis then its slope is  $m = \tan 45^{\circ} = 1$ .

## Note :

(i) Slope of x axis or a line parallel to x axis is tan  $0^{\circ} = 0$ .

(ii) Slope of y axis or a line parallel to y axis is tan  $90^{\circ} = \infty$ .

(iii) The slope of a line joining two points

$$(x_1, y_1)$$
 and  $(x_2, y_2)$  is given by  $m = \frac{y_2 - y_1}{x_2 - x_1}$ .

eg. Slope of a line joining two points (3, 5) and

(7, 9) is 
$$=\frac{9-5}{7-3}=\frac{4}{4}=1$$
.

## 4. DIFFERENT FORMS OF THE EQUATION OF STRAIGHT LINE

## 4.1 Slope - Intercept Form :

The equation of a line with slope m and making an intercept c on y-axis is y = mx + c. If the line passes through the origin, then c = 0. Thus the

equation of a line with slope m and passing through the origin y = mx.

#### 4.2 Slope Point Form :

The equation of a line with slope m and passing through a point  $(x_1, y_1)$  is

$$y - y_1 = m(x - x_1)$$

#### 4.3 Two Point Form :

The equation of a line passing through two given points  $(x_1, y_1)$  and  $(x_2, y_2)$  is –

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

#### 4.4 Intercept Form :

The equation of a line which makes intercept a and b on the x axis and y axis respectively

is 
$$\frac{x}{a} + \frac{y}{b} = 1$$
. Here, the length of intercept between

the co-ordinates axis =  $\sqrt{a^2 + b^2}$ 

b  

$$(a, 0)$$
  
 $(a, 0) \rightarrow X$ 

Area of  $\triangle OAB = \frac{1}{2}OA. OB = \frac{1}{2}a.b.$ 

**4.5 Normal (Perpendicular) Form of a Line :** If p is the length of perpendicular on a line from the origin and  $\theta$  is the inclination of perpendicular with x- axis then equation on this line is  $x\cos\theta + y\sin\theta = p$ 

#### 4.6 Parametric Form (Distance Form) :

If  $\theta$  be the angle made by a straight line with x-axis which is passing through the point

 $(x_1, y_1)$  and r be the distance of any point

(x, y) on the line from the point  $(x_1, y_1)$  then its equation.

$$\frac{\mathbf{x} - \mathbf{x}_1}{\cos \theta} = \frac{\mathbf{y} - \mathbf{y}_1}{\sin \theta} = \mathbf{r}$$

## 5. REDUCTION OF GENERAL FORM OF EQUATIONS INTO STANDARD FORMS

General Form of equation ax + by + c = 0 then its -

(i) Slope Intercept Form is 
$$y = -\frac{a}{b}x - \frac{c}{b}$$
, here

slope m = 
$$-\frac{a}{b}$$
, Intercept C =  $\frac{c}{b}$ 



(ii) Intercept Form is 
$$\frac{x}{-c/a} + \frac{y}{-c/b} = 1$$
, here

x intercept is = -c/a, y intercept is = -c/b(iii) Normal Form is

To change the general form of a line into normal form, first take c to right hand side and make it positive, then divide the whole equation by

$$\sqrt{a^2 + b^2} \text{ like} - \frac{ax}{\sqrt{a^2 + b^2}} - \frac{by}{\sqrt{a^2 + b^2}} = \frac{c}{\sqrt{a^2 + b^2}},$$
  
here  $\cos\theta = -\frac{a}{\sqrt{a^2 + b^2}}, \sin\theta = -\frac{b}{\sqrt{a^2 + b^2}}$   
and  $p = \frac{c}{\sqrt{a^2 + b^2}}$ 

## 6. POSITION OF A POINT RELATIVE TO A LINE

(i) The point  $(x_1, y_1)$  lies on the line

ax + by + c = 0 if,  $ax_1 + by_1 + c = 0$ (ii) If P(x<sub>1</sub>, y<sub>1</sub>) and Q(x<sub>2</sub>, y<sub>2</sub>) do not lie on the line ax + by + c = 0 then they are on the same side of the line, if  $ax_1+by_1+c$  and  $ax_2 + by_2+c$  are of the same sign and they lie on the opposite sides of line if

 $ax_1 + by_1 + c$  and  $ax_2 + by_2 + c$  are of the opposite sign.

(iii)  $(x_1, y_1)$  is on origin or non origin sides of the line ax + by + c = 0 if  $ax_1 + by_1 + c = 0$  and c are of the same or opposite signs.

#### 7. ANGLE BETWEEN TWO STRAIGHT LINES

The angle between two straight lines  $y = m_1 x + c_1$  and  $y = m_2 x + c_2$  is given by

 $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$ 

#### Note :

(i) If any one line is parallel to y axis then the angle

between two straight line is given by  $\tan \theta = \pm \frac{1}{m}$ Where m is the slope of other straight line

(ii) If the equation of lines are  $a_1x + b_1y + c_1 = 0$ and  $a_2x + b_2y + c_2 = 0$  then above formula would

be tan  $\theta = \frac{|a_1b_2 - b_1a_2|}{|a_1a_2 + b_1b_2|}$ 

(iii) Here two angles between two lines, but generally we consider the acute angle as the angle between them, so in all the above formula we take only positive value of  $\tan \theta$ .

#### 7.1 Parallel Lines :

Two lines are parallel, then angle between them is 0

$$\Rightarrow \frac{m_1 - m_2}{1 + m_1 m_2} = \tan 0^\circ = 0$$

$$\Rightarrow m_1 = m_2$$

**Note :** Lines  $a_1x + b_1y + c_1 = 0$  and

 $a_2x + b_2y + c_2 = 0$  are parallel  $\Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2}$ 

#### 7.2 Perpendicular Lines :

Two lines are perpendicular, then angle between them is  $90^{\circ}$ 

 $\Rightarrow \frac{m_1 - m_2}{1 + m_1 m_2} = tan 90^{\circ} = \infty \Rightarrow m_1 m_2 = -1$ 

**Note:** Lines  $a_1x + b_1y + c_1 = 0$  and  $a_2x + b_2y + c_2 = 0$  are perpendicular then

 $a_1a_2 + b_1b_2 = 0$ 

## 7.3 Coincident Lines :

Two lines  $a_1x + b_1y + c_1 = 0$  and  $a_2x + b_2y + c_2 = 0$  are coincident only and only if  $\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ 

(i) Equation of a line which is parallel to ax + by + c = 0 is ax + by + k = 0

(ii) Equation of a line which is perpendicular to ax + by + c = 0 is bx - ay + k = 0

The value of k in both cases is obtained with the help of additional information given in the problem.

## 9. EQUATION OF STRAIGHT LINES THROUGH (X<sub>1</sub>,Y<sub>1</sub>)MAKING AN ANGLE α WITH y = mx + c



## **10. LENGTH OF PERPENDICULAR**

The length P of the perpendicular from the point  $(x_1, y_1)$  on the line ax + by + c = 0 is given by

$$\mathsf{P} = \frac{\left|\mathsf{a}\mathsf{x}_1 + \mathsf{b}\mathsf{y}_1 + \mathsf{c}\right|}{\sqrt{\mathsf{a}^2 + \mathsf{b}^2}}$$

#### Note :

(i) Length of perpendicular from origin on the line ax + by + c = 0 is  $c\sqrt{a^2 + b^2}$ 

(ii) Length of perpendicular from the point  $(x_1, y_1)$  on the line  $x \cos \alpha + y \sin \alpha = p$  is  $x_1 \cos \alpha + y_1 \sin \alpha = p$ 



- **Ex.11** Find the coordinates of a point which is at 3 distance from points (1,-3) of line 2x+3y+7=0
- **Sol.** Slope of given line is  $= -\frac{2}{3}$

$$\therefore$$
 tan $\theta = -\frac{2}{3}$ 

Hence  $90^{\circ} < \theta < 180^{\circ}$ 

$$\therefore \quad \sin\theta = \frac{2}{\sqrt{13}}, \ \cos\theta = -\frac{3}{\sqrt{13}}$$

Distance from of line 2x + 3y + 7 = 0 is

$$\frac{x-1}{\left(\frac{3}{\sqrt{13}}\right)} = \frac{y+3}{\left(\frac{2}{\sqrt{13}}\right)} = r$$

Putting r = 3 we get the co-ordinates of desired point as

x - 1 = 
$$-\frac{9}{\sqrt{13}}$$
, y + 3 =  $\frac{6}{\sqrt{13}}$   
or x = 1  $-\frac{9}{\sqrt{13}}$ , y = -3 +  $\frac{6}{\sqrt{13}}$ 

## **Ex.12** Find the Normal form of line $x + \sqrt{3}y - 4 = 0$

**Sol.** Given line  $x + \sqrt{3} y = 4$ 

dividing both side by  $\sqrt{(\sqrt{3})^2 + 1^2} = 2$ 

we get  $\frac{x}{2} + \frac{\sqrt{3}y}{2} = 2$ 

- or  $x \cos \pi/3 + y \sin \pi/3 = 2$
- **Ex.13** Find the Angle between y = x + 6 and  $y = \sqrt{3}x + 7$
- **Sol**. Here  $m_1 = 1$   $m_2 = \sqrt{3}$

$$\tan \theta = \left| \frac{1 - \sqrt{3}}{1 + \sqrt{3}} \right| \Rightarrow \theta = \tan^{-1} \frac{1 - \sqrt{3}}{1 + \sqrt{3}} = 15^{\circ}$$

- **Ex.14** If A(1, 2), B(-1, 3) and C(3, -5) be vertices of a triangle then find  $\angle B$
- **Sol.** Slope of AB =  $m_1 = -1/2$ Slope of BC =  $m_2 = -2$

∴ ∠B = tan<sup>-1</sup> 
$$\left| \frac{-1/2+2}{1+(-1/2)(-2)} \right|$$
  
= tan<sup>-1</sup>(3/4)

**Ex.15** If 3x + 4y - 5 = 0 and 4x + ky - 8 = 0 are two perpendicular lines then k is -

**Sol.**  $m_1 = -\frac{3}{4}$   $m_2 = -\frac{4}{k}$ 

Two lines are perpendicular if  $m_1m_2 = -1$ 

$$\Rightarrow \left(-\frac{3}{4}\right) \times \left(-\frac{4}{k}\right) = -1 \qquad \Rightarrow k = -3$$

- **Ex.16** If 7x + 3y + 9 = 0 and y = kx + 7 are two parallel lines then find k
- **Sol.**  $m_1 = -\frac{7}{3} m_2 = k$  Two lines are parallel if  $m_1 = m_2$ k = -7/3
  - **Ex.17** Find the equation of straight lines which passes through (3,4) and making an angle of 45° with line x y 2 = 0

Sol. Here m = 1 and 
$$\tan \alpha$$
 =  $\tan 45^\circ$  = 1  
equation is y - 4 = (x - 3)  
i.e. y - 4 = 0, x - 3 = 0

- **Ex.18** One vertex of an equilateral triangle is (2,3)and the equation of line opposite to the vertex is x + y = 2, then find the equation of remaining two sides
- **Sol.** Since the two sides make an angle of  $60^{\circ}$  each with side x + y = 2. Therefore equations of these sides will be

$$y - 3 = \frac{-1 \pm \tan 60^{\circ}}{1 \mp (-1) \tan 60^{\circ}} (x - 2)$$

$$=\frac{-1\pm\sqrt{3}}{1\pm\sqrt{3}}$$
 (x - 2)

⇒ 
$$y - 3 = (2 \pm \sqrt{3})(x - 2)$$

Page # 4

# EXERCISE

- **Q.1** Find the distance between the points: A(2, -3) and B(-6, 3)
- **Q.2** Find the distance of the point P(6, –6) from ' the origin.
- **Q.3** Find a point on the x-axis which is equidistant from the points A(7, 6) and B(-3, 4).
- **Q.4** Find a point on the y-axis which is equidistance from A(-4, 3) and B(5, 2).
- **Q.5** Using the distance formula, show that the points A(3, -2) B(5, 2) and C(8, 8) are collinear.
- **Q.6** Show that the points A(7, 10), B(-2, 5) and C(3, -4) are the vertices of an isosceles right-angled triangle.
- Q.7 If the points A(-2, -1), B(1, 0), C(x, 3) and D(1, y) are the vertices of a parallelogram, find the values of x and y.
- **Q.8** Find the area of  $\triangle ABC$  whose vertices are A(-3, -5), B(5, 2), and C(-9, -3).
- **Q.9** Show that the points A(-5, 1), B(5, 5) and C(10, 7) are collinear.
- **Q.10** Find the value of k for which the points A(-2, 3), B(1, 2), C(k, 0) are collinear.
- Q.11 Find the area of the quadrilateral whose vertices are A(-4,5),B(0,7),C(5,-5) and D(-4,-2).
- **Q.12** Find the coordinates of the point which divides the join of A(-5, 11) and B(4, -7) in the ratio 2 : 7.
- **Q.13** Find the ratio in which the x-axis cuts the join of the points A(4, 5) and B(-10, 2). Also, find the point of intersection.
- Q.14 Find the slope of a line whose inclination is 30°
- **Q.15** Find the inclination of a line whose slope is  $\sqrt{3}$
- **Q.16** Find the slope of a line which passes through the points (0, 0) and (4, -2)
- **Q.17** If the slope of the line joining the points A(x, 2) and B(6, -8) is  $\frac{-5}{4}$ , find the value of x.

- **Q.18** Show that the line through the points (5, 6) and (2, 3) is parallel to the line through the points (9, -2) and (6, -5).
- **Q.19** Find the angle between the line whose slope

are 
$$\sqrt{3}$$
 and  $\frac{1}{\sqrt{3}}$ .

- **Q.20** Find the angle between the lines whose slopes are  $(2 \sqrt{3})$  and  $(2 + \sqrt{3})$ .
- **Q.21** If A(1, 2), B(-3, 2) and C(3, -2) be the vertices of a  $\triangle$ ABC, show that

(i) tan A = 2 (ii) tan B = 
$$\frac{2}{3}$$
 (iii) tan C =  $\frac{4}{7}$ 

**Q.22** If  $\theta$  is the angle between the lines joining the points A(0, 0) and B(2, 3), and the points

C(2, -2), D(3, 5), show that 
$$\tan \theta = \frac{11}{23}$$

- **Q.23** If  $\theta$  is the angle between the diagonals of a parallelogram ABCD whose vertices are A(0, 2), B(2, -1), C(4, 0) and D(2, 3). Show that tan  $\theta = 2$ .
- Q.24 Show that the points A(0,6),B(2,1)and C(7,3) are three corners of a square ABCD. Find
  (i) the slope of the diagonals BD and
  (ii) the coordinates of the fourth vertex.
- **Q.25** A(1, 1), B(7, 3) and C(3, 6) are the vertices of a  $\triangle ABC$ . If D is the midpoint of BC and AL  $\perp$  BC, find the slope of (i) AD and (ii) AL.
- **Q.26** Find the angle which the line joining the points  $(1, \sqrt{3})$  and  $(\sqrt{2}, \sqrt{6})$  makes with the x-axis.
- **Q.27** Prove that the points A(1, 4), B(3, -2) and C(4, -5) are collinear. Also find the equations of line on which these points lie.
- **Q.28** If A(0, 0), B(2, 4) and C(6, 4) are the vertices of a  $\triangle ABC$ , find the equations of its side.
- **Q.29** If A(-1, 6), B(-3, -9) and C(5, -8) are the vertices of a  $\triangle$ ABC, find the equation of its medians.
- **Q.30** Find the equation of the perpendicular bisector of the line segment whose end points are A(10, 4) and B(-4, 9).

- **Q.31** Find the equations of the altitudes of a  $\triangle$ ABC, whose vertices are A(2, -2), B(1, 1) and C(-1, 0).
- **Q.32** If A(4, 3), B(0, 0) and C(2, 3) are the vertices of a  $\triangle ABC$ , find the equation of the bisector of  $\angle A$ .
- **Q.33** The midpoints of the sides BC, CA and AB of a  $\triangle$ ABC are D(2, 1), E(-5, 7) and F(-5, -5) respectively. Find the equations of the sides of  $\triangle$ ABC.
- Q.34 If A(1, 4), B(2, -3) and C(-1, -2) are the vertices of a ∆ABC, find the equation of
  (i) the median through A
  (ii) the altitude through A
  (iii) the perpendicular bisector of BC.
  - **Circle the exaction of the bisector of BC**.
- **Q.35** Find the equation of the bisectors of the angles between the coordinate axes.
- **Q.36** Find the equation of the line through the point (-1, 5) and making an intercept of -2 on the y-axis.
- **Q.37** Find the equation of the line which is parallel to the line 2x 3y = 8 and whose y-intercept is 5 units.
- **Q.38** Find the equation of the line passing through the point (0, 3) and perpendicular to the line x 2y + 5 = 0.
- **Q.39** Find the equation of the line which is perpendicular to the line 3x + 2y = 8 and passes through the midpoint of the line joining the points (6, 4) and (4, -2).
- **Q.40** Find the equation of the line whose y-intercept is -3 and which is perpendicular to the line joining the points (-2,3) and (4,-5).
- **Q.41** Find the equation of the line passing through (-3, 5) and perpendicular to the line through the points (2, 5), and (-3, 6).
- **Q.42** A line perpendicular to the line segment joining the points (1, 0) and (2, 3) divides it in the ratio 1 : 2. Find the equation of the line.
- **Q.43** Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes, whose sum is 9.
- **Q.44** Find the equation of the line which passes through the point (22, -6) and whose intercept on the x-axis exceeds the intercept on the y-axis by 5.
- **Q.45** Find the equation of the line whose portion between the axes is bisected at the point (3, -2).

- **Q.46** Find the equation of the line whose portion intercepted between the coordinate axes is divided at the point (5, 6) in the ratio 3 : 1.
- Q.47 A straight line passes through the point (-5,2) and portion of the line intercepted between the axes is divided at this point the ratio 2 : 3. Find the equation of the line.
- **Q.48** If the straight line  $\frac{x}{a} + \frac{y}{b} = 1$  passes through the

points (8, -9) and (12, -15), find the value of a and b.

- **Q.49** Find the equation of the line for which p = 3 and  $\alpha = 45^{\circ}$
- **Q.50** The length of the perpendicular segment from the origin to a line is 2 units and the inclination of this perpendicular is  $\alpha$  such that sin  $\alpha = \frac{1}{3}$  and  $\alpha$  is acute. Find the equation of the line.
- **Q.51** Find the equation of the line which is at a distance of 3 units from the origin such that

 $\tan \alpha = \frac{5}{12}$ , where  $\alpha$  is the acute angle which

this perpendicular makes with the positive direction of the x-axis.

- **Q.52** Reduce the equation y + 5 = 0 to slopeintercept form, and hence find the slope and y-intercept of the line.
- **Q.53** Reduce the equation 3x 4y + 12 = 0 to intercepts form. Hence, find length of the portion of the line intercepts between the axes.
- **Q.54** Reduce the equation  $x + y \sqrt{2} = 0$  to the normal form  $x \cos \alpha + y \sin \alpha = p$ , and hence find the values of  $\alpha$  and p.
- **Q.55** Find the values of k for which the length of perpendicular from the point (4, 1) on the line 3x 4y + k = 0 is 2 units.
- **Q.56** Show that the length of perpendicular from the point (7, 0) to the line 5x + 12y-9 = 0 is double the length of perpendicular to it from the point (2, 1).
- **Q.57** The points A(2, 3), B(4, -1) and C(-1, 2) are the vertices of  $\triangle$ ABC. Find the length of perpendicular form C on AB and hence find the area of  $\triangle$ ABC.

- **Q.58** What are the points on the x-axis whose perpendicular distance from the line  $\frac{x}{3} + \frac{y}{4} = 1$  is 4 units?
- **Q.59** Find all the points on the line x + y = 4 that lie at a unit distance from the line 4x + 3y = 10.
- **Q.60** A vertex of a square is at the origin and its one side lies along the line 3x 4y 10 = 0. Find the area of the square.
- **Q.61** Find the distance between the parallel lines 4x 3y + 5 = 0 and 4x 3y + 7 = 0.
- **Q.62** Prove that the line 12x 5y 3 = 0 is midparallel to the line 12x - 5y + 7 = 0 and 12x - 5y - 13 = 0.
- **Q.63** The perpendicular distance of a line from the origin is 5 units and its slope is -1. Find the equation of the line.
- **Q.64** Find the value of k so that the lines 3x y 2 = 0, 5x + ky 3 = 0 and 2x + y 3 = 0 are concurrent.
- **Q.65** Find the image of the point P(1, 2) in the line x 3y + 4 = 0.
- **Q.66** Find the area of the triangle formed by the lines x + y = 6, x 3y = 2 and 5x 3y + 2 = 0.
- **Q.67** Find the area of the triangle formed by the lines x = 0, y = 1 and 2x + y = 2.
- **Q.68** Find the area of the triangle, the equations of whose sides are y = x, y = 2x and y 3x = 4.
- **Q.69** Find the equation of the perpendicular drawn from the origin to the line 4x 3y + 5 = 0. Also, find the coordinates of the foot of the perpendicular.

**Q.70** Find the equation of the perpendicular drawn from the point P(-2, 3) to the line x - 4y + 7 = 0. Also, find the coordinates of the foot of the perpendicular.

| ANSWER KEY                                                                                                                                                 |                                                                                  |                                                             |                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|
| 1.<br>4.<br>10.                                                                                                                                            | 10 units <b>2.</b> $6\sqrt{2}$ unitsP(0, -2) <b>7.</b> x=4, yk=7 <b>11.</b> 60.5 | units <b>3.</b><br>y=2 <b>8.</b> 29<br>5 sq units <b>12</b> | P(3, 0)<br>9 sq units<br>2. P(-3, 7)          |
| 13.                                                                                                                                                        | (5:2), P(-6,0)                                                                   | <b>14.</b> $\frac{1}{\sqrt{3}}$                             | <b>15.</b> 60°                                |
| 16                                                                                                                                                         | $-\frac{1}{2}$ <b>17.</b> x=-2                                                   | <b>19.</b> 30°                                              | <b>20.</b> 60°                                |
| 24.                                                                                                                                                        | (i) <sup>7</sup> / <sub>3</sub> (ii) (5,8)                                       | 25. (i) $\frac{7}{8}$ (                                     | <b>ii)</b> $\frac{4}{3}$                      |
| <b>26.</b> 60° <b>27.</b> 3x+y-7=0 <b>28.</b> y=4, 2x-3y= 0, 2x-y=0                                                                                        |                                                                                  |                                                             |                                               |
| <b>29.</b> $29x+4y+5=0$ , $8x-5y-21=0$ , $13x+14y+47=0$<br><b>30.</b> $28x-10y-19=0$<br><b>31.</b> $2x + y - 2 = 0$ , $3x - 2y - 1 = 0$ , $x - 3y + 1 = 0$ |                                                                                  |                                                             |                                               |
| 32.                                                                                                                                                        | x-3y+5=0                                                                         |                                                             |                                               |
| 33. x                                                                                                                                                      | -2 = 0, 6x - 7y + 79 = 0                                                         | 0, 6x + 7y + 0                                              | 65 = 0                                        |
| 34.                                                                                                                                                        | (i) $13x - y - 9 = 0$<br>(iii) $3x - y - 4 = 0$                                  | <b>(ii)</b> 3x – y +                                        | 1 = 0                                         |
| 35.                                                                                                                                                        | x-y=0  or  x + y = 0                                                             | <b>36.</b> 7x + y +                                         | 2 = 0                                         |
| 37.                                                                                                                                                        | 2x - 2y + 15 = 0                                                                 | <b>38.</b> 2x + y –                                         | 3 = 0                                         |
| 39.                                                                                                                                                        | 2x - 3y - 7 = 0                                                                  | <b>40.</b> $3x - 4y - 12 = 0$                               |                                               |
| 41.                                                                                                                                                        | 5x - y + 20 = 0                                                                  | <b>42.</b> 3x + 9y                                          | -13 = 0                                       |
| 43.<br>44                                                                                                                                                  | x + 2y - 6 = 0 or $2x + y - 6 = 06x + 11y - 66 = 0$ or $x + 2y - 10 = 0$         |                                                             |                                               |
| 45.                                                                                                                                                        | 2x - 3y - 12 = 0                                                                 | <b>46.</b> 2x + 5y                                          | - 40 = 0                                      |
| 47.                                                                                                                                                        | 3x - 5y + 25 = 0                                                                 | <b>48.</b> a = 2, b                                         | = 3                                           |
| 49.                                                                                                                                                        | $x + y - 3\sqrt{2} = 0$                                                          | <b>50.</b> $2\sqrt{2}x + y$                                 | / - 6 = 0                                     |
| 51.<br>52                                                                                                                                                  | 12x + 5y - 39 = 0                                                                | nda – F                                                     |                                               |
| 52.                                                                                                                                                        | $y = 0 \cdot x = 3$ , III = 0 al                                                 | lu C = -5                                                   |                                               |
| 53.<br>54.                                                                                                                                                 | $\frac{-4}{-4}$ $\frac{-3}{3}$ xcos45° + ysin 45° =                              | 1; α = 45°, p                                               | 0 = 1                                         |
| 55.                                                                                                                                                        | k = 2  or  k = -18                                                               | <b>57.</b> $\frac{7}{\sqrt{5}}$ unit                        | s, 7 sq units                                 |
| 58.                                                                                                                                                        | (8, 0) and (-2, 0)                                                               | <b>59.</b> (3, 1) ar                                        | nd (-7, 11)                                   |
| 60.                                                                                                                                                        | 4 sq units                                                                       | <b>61.</b> $\frac{2}{5}$ units                              |                                               |
| 63.                                                                                                                                                        | $x + y + 5\sqrt{2} = 0 \text{ or } x$                                            | $+y-5\sqrt{2} = 0$                                          |                                               |
| 64.                                                                                                                                                        | $k = -2$ <b>65.</b> $\left(\frac{6}{5}, \frac{7}{5}\right)$                      | <b>66.</b> 12 sq u                                          | inits                                         |
| <b>67.</b> 1                                                                                                                                               | sq units <b>68.</b> 4 sq units                                                   | <b>69.</b> 3x + 4y                                          | $= 0, \left(-\frac{4}{5}, \frac{3}{5}\right)$ |
| 70.                                                                                                                                                        | $4x + y + 5 = 0, \left(\frac{-27}{17}, \right)$                                  | $\left(\frac{23}{17}\right)$                                |                                               |

Page # 7