QUADRILATERALS

> IMPORTANT POINTS

- A quadrilateral is a figure bounded by four line segments such that no three of them are parallel.
- Two sides of quadrilateral are consecutive or adjacent sides, if they have a common point (vertex).
- Two sides of a quadrilateral are opposite sides, if they have no common end-point (vertex).
- The consecutive angles of a quadrilateral are two angles which include a side in their intersection. In other words, two angles are consecutive, if they have a common arm.
- Two angles of a quadrilateral are said to be opposite angles if they do not have a common arm.
- The sum of the four angles of a quadrilateral is 360°.

❖ EXAMPLES ❖

- **Ex.1** In a quadrilateral ABCD, the angles A, B, C and D are in the ratio 2:4:5:7. Find the measure of each angles of the quadrilateral.
- **Sol.** We have $\angle A : \angle B : \angle C : \angle D = 2 : 4 : 5 : 7$. So, let $\angle A = 2x^{\circ}$, $\angle B = 4x^{\circ}$, $\angle C = 5x^{\circ}$, $\angle D = 7x^{\circ}$.

$$\therefore \angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\Rightarrow 2x + 4x + 5x + 7x = 360^{\circ}$$

$$\Rightarrow$$
 18x = 360°

$$\Rightarrow$$
 x = 20°

Thus, the angles are:

$$\angle A = 40^{\circ}, \angle B = (4 \times 20)^{\circ} = 80^{\circ},$$

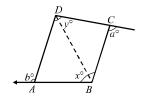
$$\angle C = (5 \times 20)^{\circ} = 100^{\circ}$$

and,
$$\angle D = (7x)^{\circ} = (7 \times 20)^{\circ} = 140^{\circ}$$

Ex.2 The sides BA and DC of a quadrilateral ABCD are produced as shown in fig.

Prove that a + b = x + y.

Sol. Join BD. In \triangle ABD, we have



$$\angle ABD + \angle ADB = b^o$$
(i)

In \triangle CBD, we have

$$\angle CBD + \angle CDB = a^{\circ}$$
(ii)

Adding (i) and (ii), we get

$$(\angle ABD + \angle CBD) + (\angle ADB + \angle CDB) = a^{\circ} + b^{\circ}$$

$$\Rightarrow x^o + y^o = a^o + b^o$$

Hence,
$$x + y = a + b$$

Ex.3 In a quadrilateral ABCD, AO and BO are the bisectors of $\angle A$ and $\angle B$ respectively. Prove that $\angle AOB = \frac{1}{2}(\angle C + \angle D)$.

Sol. In $\triangle AOB$, we have

$$\angle AOB + \angle 1 + \angle 2 = 180^{\circ}$$

$$\Rightarrow \angle AOB = 180^{\circ} - (\angle 1 + \angle 2)$$

$$\Rightarrow \angle AOB = 180^{\circ} - \left(\frac{1}{2}\angle A + \frac{1}{2}\angle B\right)$$

$$\left[\because \angle 1 = \frac{1}{2} \angle A \text{ and } \angle 2 = \frac{1}{2} \angle B\right]$$

$$\Rightarrow \angle AOB = 180^{\circ} - \frac{1}{2} (\angle A + \angle B)$$

$$\Rightarrow \angle AOB = 180^{\circ} - \frac{1}{2} [360^{\circ} - (\angle C + \angle D)]$$

$$[\because \angle A + \angle B + \angle C + \angle D = 360^{\circ}$$

$$\therefore \angle A + \angle B = 360^{\circ} - (\angle C + \angle D)]$$

$$\Rightarrow \angle AOB = 180^{\circ} - 180^{\circ} + \frac{1}{2} (\angle C + \angle D)$$

$$\Rightarrow \angle AOB = \frac{1}{2} (\angle C + \angle D)$$

Ex.4 In figure bisectors of ∠B and ∠D of quadrilateral ABCD meet CD and AB produced at P and Q respectively. Prove that

$$\angle P + \angle Q = \frac{1}{2} (\angle ABC + \angle ADC)$$

A
B
Q
3
3
3

Sol. In $\triangle PBC$, we have

$$\therefore \angle P + \angle 4 + \angle C = 180^{\circ}$$

$$\Rightarrow \angle P + \frac{1}{2} \angle B + \angle C = 180^{\circ} \qquad \dots(i)$$

In $\triangle QAD$, we have $\angle Q + \angle A + \angle 1 = 180^{\circ}$

$$\Rightarrow \angle Q + \angle A + \frac{1}{2} \angle D = 180^{\circ}$$
 ...(ii)

Adding (i) and (ii), we get

$$\angle P + \angle Q + \angle A + \angle C + \frac{1}{2} \angle B + \frac{1}{2} \angle D$$

$$= 180^{\circ} + 180^{\circ}$$

$$\Rightarrow \angle P + \angle Q + \angle A + \angle C + \frac{1}{2} \angle B + \frac{1}{2} \angle D = 360^{\circ}$$

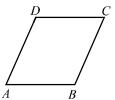
$$\Rightarrow \angle P + \angle Q + \angle A + \angle C + \frac{1}{2} (\angle B + \angle D)$$

$$= \angle A + \angle B + \angle C + \angle D$$

[:. In a quadrilateral ABCD \angle A + \angle B + \angle C + \angle D = 360°]

$$\Rightarrow \angle P + \angle Q = \frac{1}{2} (\angle B + \angle D)$$
$$\Rightarrow \angle P + \angle Q = \frac{1}{2} (\angle ABC + \angle ADC)$$

- Ex.5 In a parallelogram ABCD, prove that sum of any two consecutive angles is 180°.
- **Sol.** Since ABCD is a parallelogram. Therefore, $AD \parallel BC$.



Now, AD \parallel BC and transversal AB intersects them at A and B respectively.

$$\therefore \angle A + \angle B = 180^{\circ}$$

[\because Sum of the interior angles on the same side of the transversal is 180°]

Similarly, we can prove that

$$\angle B + \angle C = 180^{\circ}$$
, $\angle C + \angle D = 180^{\circ}$ and $\angle D + \angle A = 180^{\circ}$.

- A quadrilateral having exactly one pair of parallel sides, is called a trapezium.
- A trapezium is said to be an isoscels trapezium, if its non-parallel sides are equal.
- A quadrilateral is a parallelogram if its both pairs of opposite sides are parallel.
- A parallelogram having all sides equal is called a rhombus.
- A parallelogram whose each angle is a right angle, is called a rectangle.
- A square is a rectangle with a pair of adjacent sides equal.
- A quadrilateral is a kite if it has two pairs of equal adjacent sides and unequal opposite sides.
- A diagonal of a parallelogram divides it into two congruent triangles.
- In a parallelogram, opposite sides are equal.
- The opposite angles of a parallelogram are equal.
- The diagonals of a parallelogram bisect each other
- In a parallelogram, the bisectors of any two consecutive angles intersect at right angle.
- ♦ If diagonal of a parallelogram bisects one of the angles of the parallelogram, it also bisects the second angle.
- The angle bisectors of a parallegram form a rectangle.

- **Ex.6** In a parallelogram ABCD, $\angle D = 115^{\circ}$, determine the measure of $\angle A$ and $\angle B$.
- **Sol.** Since the sum of any two consecutive angles of a parallelogram is 180°. Therefore,

$$\angle A + \angle D = 180^{\circ}$$
 and $\angle A + \angle B = 180^{\circ}$

Now, $\angle A + \angle D = 180^{\circ}$

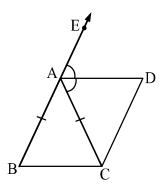
$$\Rightarrow \angle A + 115^{\circ} = 180^{\circ} [\because \angle D = 115^{\circ} (given)]$$

$$\Rightarrow$$
 $\angle A = 65^{\circ}$ and $\angle A + \angle B = 180^{\circ}$

$$\Rightarrow$$
 65° + \angle B = 180° \Rightarrow \angle B = 115°

Thus, $\angle A = 65^{\circ}$ and $\angle B = 115^{\circ}$

Ex.7 In figure, AB = AC, \angle EAD = \angle CAD and CD || AB. Show that ABCD is a parallelogram.



Sol. In
$$\triangle ABC$$
, $AB = AC$

[Given]

$$\Rightarrow$$
 $\angle ABC = \angle ACB$

....(1)

(Angles opposite the equal sides are equal)

$$\angle EAD = \angle CAD[Given] \dots (2)$$

Now, $\angle EAC = \angle ABC + \angle ACB$

(An exterior angle is equal to sum of two interior opposite angles of a triangles)

$$\Rightarrow$$
 $\angle EAD + \angle CAD = \angle ABC + \angle ACB$

$$\Rightarrow$$
 $\angle CAD + \angle CAD = \angle ACB + \angle ACB$

By (1) and (2)

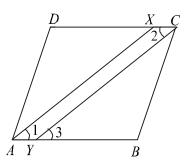
$$\Rightarrow$$
 2 \angle CAD = 2 \angle ACB

$$\Rightarrow$$
 $\angle CAD = \angle ACB$

$$\Rightarrow$$
 BC | AD

Thus, we have both pairs of opposite sides of quadrilateral ABCD parallel. Therefore, ABCD is a parallelogram.

Ex.8 ABCD is a parallelogram and line segments AX,CY are angle bisector of $\angle A$ and $\angle C$ respectively then show AX \parallel CY.



Sol. Since opposite angles are equal in a parallelogram. Therefore, in parallelogram ABCD, we have $\angle A = \angle C$

$$\Rightarrow \frac{1}{2} \angle A = \frac{1}{2} \angle C$$

$$\Rightarrow \angle 1 = \angle 2 \qquad \dots(i)$$

[: AX and CY are bisectors of $\angle A$ and $\angle C$ respectively]

Now, AB \parallel DC and the transversal CY intersects them.

$$\therefore$$
 $\angle 2 = \angle 3$ (ii)

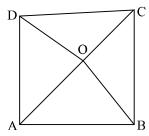
[: Alternate interior angles are equal]

From (i) and (ii), we get

$$\angle 1 = \angle 3$$

Thus, transversal AB intersects AX and YC at A and Y such that $\angle 1 = \angle 3$ i.e. corresponding angles are equal.

Ex.9 In the adjoining figure, a point O is taken inside an equilateral quad. ABCD such that OB = OD. Show that A, O and C are in the same straight line.



Sol. Given a quad. ABCD in which AB = BC = CD = DA and O is a point within it such that OB = OD.

To prove $\angle AOB + \angle COB = 180^{\circ}$

Proof In $\triangle OAB$ and OAD, we have

$$AB = AD$$
 (given), $OA = OA$

(common) and OB = OD (given)

 \triangle \triangle OAB \cong \triangle OAD

$$\therefore$$
 $\angle AOB = \angle AOD$ (i) (c.p.c.t.)

Similarly, $\triangle OBC \cong \triangle ODC$

$$\therefore$$
 \angle COB = \angle COD(ii)

Now,
$$\angle AOB + \angle COB + \angle COD + \angle AOD$$

$$= 360^{\circ}$$

 $[\angle$ at a point]

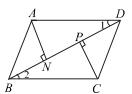
$$\Rightarrow 2(\angle AOB + \angle COB) = 360^{\circ}$$

$$\Rightarrow \angle AOB + \angle COB = 180^{\circ}$$

Ex.10 In figure AN and CP are perpendiculars to the diagonal BD of a parallelogram ABCD. Prove that:

(i)
$$\triangle ADN \cong \triangle CBP$$

$$(ii)$$
 AN = CP



Sol. Since ABCD is a parallelogram.

Now, AD \parallel BC and transversal BD intersects them at B and D.

$$\therefore \angle 1 = \angle 2$$

[: Alternate interior angles are equal]

Now, in Δ s ADN and CBP, we have

$$\angle 1 = \angle 2$$

$$\angle$$
AND = \angle CPD and, AD = BC

[: Opposite sides of a ||gm are equal]

So, by AAS criterion of congruence

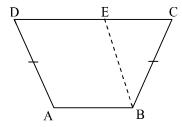
$$\Delta ADN \cong \Delta CBP$$

$$AN = CP$$

[::Corresponding parts of congruent triangles are equal]

Ex.11 In figure, ABCD is a trapezium such that

$$AB \parallel CD$$
 and $AD = BC$.



BE || AD and BE meets BC at E.

Show that (i) ABED is a parallelogram.

(ii)
$$\angle A + \angle C = \angle B + \angle D = 180^{\circ}$$
.

$$\Rightarrow$$
 AB || DE(1)

Also, BE
$$\parallel$$
 AD (Given)(2)

From (1) and (2),

ABED is a parallelogram

$$\Rightarrow$$
 AD = BE(3)

Also,
$$AD = BC$$
 (Given)(4)

From (3) and (4),

$$BE = BC$$

$$\Rightarrow$$
 $\angle BEC = \angle BCE$ (5)

Also,
$$\angle BAD = \angle BED$$

(opposite angles of parallelogram ABED)

i.e.,
$$\angle BED = \angle BAD$$
(6)

Now, $\angle BED + \angle BEC = 180^{\circ}$ (Linear pair of angles)

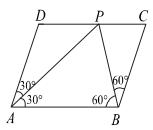
$$\Rightarrow$$
 $\angle BAD + \angle BCE = 180^{\circ}$

By (5) and (6)

$$\Rightarrow$$
 $\angle A + \angle C = 180^{\circ}$

Similarly,
$$\angle B + \angle D = 180^{\circ}$$

Ex.12 In figure ABCD is a parallelogram and $\angle DAB = 60^{\circ}$. If the bisectors AP and BP of angles A and B respectively, meet at P on CD, prove that P is the mid-point of CD.



Sol. We have, $\angle DAB = 60^{\circ}$

$$\angle A + \angle B = 180^{\circ}$$

$$\therefore$$
 60° + \angle B = 180° \Rightarrow \angle B = 120°

Now, AB \parallel DC and transversal AP intersects them.

$$\therefore$$
 $\angle PAB = \angle APD$

$$\Rightarrow$$
 $\angle APD = 30^{\circ}$

$$[\because \angle PAB = 30^{\circ}]$$

Thus, in \triangle APD, we have

$$\angle PAD = \angle APD$$
 [Eacl

[Each equal to 30°]

$$\Rightarrow$$
 AD = PD (i)

[: Angles opposite to equal sides are equal] Since BP is the bisector of \angle B. Therefore,

$$\angle ABP = \angle PBC = 60^{\circ}$$

Now, AB \parallel DC and transversal BP intersects them.

$$\Rightarrow$$
 \angle CPB = 60°

$$[\because \angle ABP = 60^{\circ}]$$

Thus, in $\triangle CBP$, we have

$$\angle$$
CBP = \angle CPB

[Each equal to 60°]

$$\Rightarrow$$
 CP = BC

: [Sides opp, to equal angles are equal]

$$\Rightarrow$$
 CP = AD (ii)

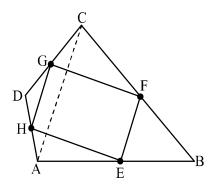
$$[:: ABCD \text{ is a } ||gm :: AD = BC]$$

From (i) and (ii), we get

$$PD = CP$$

 \Rightarrow P is the mid point of CD.

- A quadrilateral is a parallelogam if its opposite sides are equal.
- A quadrilateral is a parallelogram if its opposite angles are equal.
- ♦ If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
- ♦ A quadrilateral is a parallelogram, if its one pair of opposite sides are equal and parallel.
- **Ex.13** Prove that the line segments joining the midpoint of the sides of a quadrilateral forms a parallelogram.
- **Sol.** Points E, F, G and H are the mid-points of the sides AB, BC, CD and DA respectively, of the quadrilateral ABCD. We have to prove that EFGH is a parallelogram.



Join the diagonal AC of the quadrilateral ABCD.

Now, in $\triangle ABC$, we have E and F mid-points of the sides BA and BC.

$$\Rightarrow$$
 EF || AC

and
$$EF = \frac{1}{2}AC$$
 (1)

Similarly, from $\triangle ADC$, we have

$$GH \parallel AC$$

and
$$GH = \frac{1}{2}AC$$
(2)

Then from (1) and (2), we have

and
$$EF = GH$$

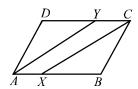
This proves that EFGH is a parallelogram.

- **Ex.14** In figure ABCD is a parallelogram and X, Y are the mid-points of sides AB and DC respectively. Show that AXCY is a parallelogram.
- **Sol.** Since X and Y are the mid-points of AB and DC respectively. Therefore,

$$AX = \frac{1}{2}AB$$
 and $CY = \frac{1}{2}DC$... (i)

But,AB = DC

[: ABCD is a ||gm]



$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}DC$$

$$\Rightarrow$$
 AX = CY

Also, AB || DC

$$\Rightarrow$$
 AX || YC (iii)

Thus, in quadrilateral AXCY, we have

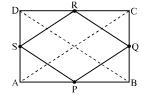
$$AX \parallel YC \text{ and } AX = YC$$

[From (ii) and (iii)]

.... (ii)

Hence, quadrilateral AXCY is a parallelogram.

- **Ex.15** Prove that the line segments joining the midpoints of the sides of a rectangle forms a rhombus.
- **Sol.** P, Q, R and S are the mid-points of the sides AB, BC, CD and DA of the rectangle ABCD.



Here, AC = BD

 $(::\Delta ABC \cong \Delta BAD)$

Now, SR || AC and SR = $\frac{1}{2}$ AC

and $PQ \parallel AC$ and $PQ = \frac{1}{2}AC$

 \Rightarrow SR || PQ and SR = PQ = $\frac{1}{2}$ AC

Similarly, PS || QR and PS = QR = $\frac{1}{2}$ BD

 \Rightarrow SR || PQ, PS || QR

and $SR = PQ = PS = QR \quad (::AC = BD)$

PQRS is a rhombus.

- Ex.16 In figure ABCD is a parallelogram and X and Y are points on the diagonal BD such that DX = BY. Prove that
 - (i) AXCY is a parallelogram
 - (ii) AX = CY, AY = CX
 - (iii) $\triangle AYB \cong \triangle CXD$
- Sol. Given: ABCD is a parallelogram. X and Y are points on the diagonal BD such that DX = BY

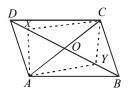
To Prove:

- (i) AXCY is a parallelogram
- (ii) AX = CY, AY = CX
- (iii) $\triangle AYB \cong \triangle CXD$

Construction: join AC to meet BD at O.

Proof:

(i) We know that the diagonals of a parallelogram bisect each other. Therefore, AC and BD bisect each other at O.



$$\therefore$$
 OB = OD

But,BY = DX

$$\therefore$$
 OB – BY = OD – DX

$$\Rightarrow$$
 OY = OX

Thus, in quadrilateral AXCY diagonals AC and XY are such that OX = OY and OA = OC i.e. the diagonals AC and XY bisect each other.

Hence, AXCY is a parallelogram.

(ii) Since AXCY is a parallelogram

$$\therefore$$
 AX = CY and AY = CX

(iii) In triangles AYB and CXD, we have

$$AY = CX$$
 [From (ii)]

$$AB = CD$$

[: ABCD is a parallelogram]

$$BY = DX$$
 [Given]

So, by SSS-criterion of congruence, we have $\Delta AYB \cong \Delta CXD$

Ex.17 In fig. ABC is an isosceles triangle in which AB = AC. CP \parallel AB and AP is the bisector of exterior \angle CAD of \triangle ABC. Prove that \angle PAC = \angle BCA and ABCP is a parallelogram.

Sol. Given: An isosceles $\triangle ABC$ having AB = AC.AP is the bisector of ext $\angle CAD$ and $CP \parallel AB$.

To Prove : $\angle PAC = \angle BCA$ and ABCP

Proof: In \triangle ABC, we have

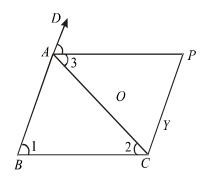
$$AB = AC$$
 [Given]

$$\Rightarrow \angle 1 = \angle 2$$
 (i)

 $\begin{bmatrix} \because \text{Angles opposite to equal} \\ \text{sides in a } \Delta \text{ are equal} \end{bmatrix}$

Now, in \triangle ABC, we have

$$ext \angle CAD = \angle 1 + \angle 2$$



: An exterioranglesis equal to the sum of two opposite interior angles

$$\Rightarrow$$
 ext \angle CAD = $2\angle$ 2 [:: \angle 1 = \angle 2 (from (i))]

$$\Rightarrow 2 \angle 3 = 2 \angle 2$$

[: AP is the bisector of ext. \angle CAD : \angle CAD = 2 \angle 3]

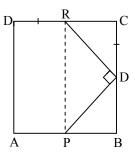
$$\Rightarrow \angle 3 = \angle 2$$

Thus, AC intersects lines AP and BC at A and C respectively such that $\angle 3 = \angle 2$ i.e., alternate interior angles are equal. Therefore,

$$AP \parallel BC$$
.

Thus, ABCP is a quadrilateral such that AP \parallel BC and CP \parallel AB. Hence, ABCP is a parallelogram.

Ex.18 In the given figure, ABCD is a square and $\angle PQR = 90^{\circ}$. If PB = QC = DR, prove that



(i)
$$QB = RC$$
, (ii) $PQ = QR$, (iii) $\angle QPR = 45^{\circ}$.

Sol. BC = DC, CQ = DR
$$\Rightarrow$$
 BC - CQ = \triangle CDR \Rightarrow QB = RC

From
$$\triangle CQR$$
, $\angle RQB = \angle QCR + \angle QRC$

$$\Rightarrow \angle RQP + \angle PQB = 90^{\circ} + \angle QRC$$

$$\Rightarrow$$
 90° + \angle PQB = 90° + \angle QRC

Now, $\triangle RCQ \cong \triangle QBP$ and therefore,

$$QR = PQ$$

$$PQ = QR \Rightarrow \angle QPR = \angle PRQ$$

Bur,
$$\angle QPR + \angle PRQ = 90^{\circ}$$
.

So,
$$\angle QPR = 45^{\circ}$$

- Each of the four angles of a rectangel is a right angle.
- Each of the four sides of a rhombus is of the same length.
- ♦ Each of the angles of a square is a right angle and each of the four sides is of the same length.
- The diagonals of a rectangle are of equal length.
- If the two diagonals of parallelogram are equal, it is a rectangle.
- The diagonals of a rhombus are perpendicular to each other.
- ♦ If the diagonals of a parallelogram are perpendicular, then it is a rhombus.
- The diagonals of a square are equal and perpendicular to each other.
- ♦ If the diagonals of a parallelogram are equal and intersect at right angles then the parallelogram is a square.

♦ EXAMPLES ♦

Ex.19 Prove that in a parallelogram

- (i) opposite sides are equal
- (ii) opposite angles are equal
- (iii) each diagonal bisects the parallelogram

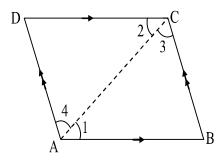
Sol. Given: A ||gm ABCD in which AB || DC and AD || BC.

To prove (i) AB = CD and BC = AD;

- (ii) $\angle B = \angle D$ and $\angle A = \angle C$,
- (iii) $\triangle ABC = \triangle CDA$ and $\triangle ABD = \triangle CDB$

Construction join A and C.

In $\triangle ABC$ and CDA, we have,



$$\angle 1 = \angle 2$$

[Alt. int. \angle , as AB || DC and CA cuts them]

$$\angle 3 = \angle 4$$

[Alt. int. \angle , as BC || AD and CA cuts them]

AC = CA (common)

- $\therefore \triangle ABC \cong \triangle CDA [AAS-criterial]$
- (i) $\triangle ABC \cong \triangle CDA$ (proved)

$$\therefore$$
 AB = CD and BC = AD (c.p.c.t.)

(ii) $\triangle ABC \cong \triangle CDA$ (proved)

$$\therefore \angle B = \angle D \text{ (c.p.c.t.)}$$

Also,
$$\angle 1 = \angle 2$$
 and $\angle 3 = \angle 4$

$$\angle 1 + \angle 4 = \angle 2 + \angle 3 \Rightarrow \angle A = \angle C$$

Hence, $\angle B = \angle D$ and $\angle A = \angle C$

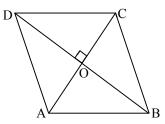
(iii) Since $\triangle ABC \cong \triangle CDA$ and congruent triangles are equal in area,

So we have $\triangle ABC = \triangle CDA$

Similarly, $\triangle ABD = \triangle CDB$

Ex.20 If the diagonals of a parallelogram are perpendicular to each other, prove that it is a rhombus.

Sol. Since the diagonals of a ||gm bisect each other,



we have, OA = OC and OB = OD.

Now, in \triangle AOD and COD, we have

$$OA = OC$$
, $\angle AOD = \angle COD = 90^{\circ}$

and OD is common

$$\therefore$$
 $\triangle AOD \cong \triangle COD$

$$\therefore$$
 AD = CD (c.p.c.t.)

Now,
$$AB = CD$$
 and $AD = BC$

(opp. sides of a ||gm)

and
$$AD = CD$$
 (proved)

$$\therefore$$
 AB = CD = AD = BC

Hence, ABCD is a rhombus.

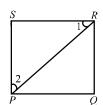
Ex.21 PQRS is a square. Determine ∠SRP.

Sol. PQRS is a square.

$$\therefore$$
 PS = SR and \angle PSR = 90°

Now, in \triangle PSR, we have

$$PS = SR$$



⇒
$$\angle 1 = \angle 2$$
 $\begin{bmatrix} \therefore \text{ Angles opp. to } \\ \text{equal sides are equal} \end{bmatrix}$

But,
$$\angle 1 + \angle 2 + \angle PSR = 180^{\circ}$$

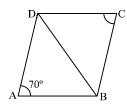
$$\therefore 2\angle 1 + 90^\circ = 180^\circ$$
 [$\because \angle PSR = 90^\circ$]

$$\Rightarrow 2\angle 1 = 90^{\circ}$$

$$\Rightarrow$$
 $\angle 1 = 45^{\circ}$

Ex.22 In the adjoining figure, ABCD is a rhombus. If $\angle A = 70^{\circ}$, find $\angle CDB$

Sol.



We have
$$\angle C = \angle A = 70^{\circ}$$

(opposite \angle of a $\|gm$)

Let
$$\angle CDB = x^{\circ}$$

In $\triangle CDB$, we have

$$CD = CB \Rightarrow \angle CBD = \angle CDB = x^{o}$$

$$\therefore$$
 \angle CDB + \angle CBD + \angle DCB = 180°

(angles of a triangle)

$$\Rightarrow$$
 $x^{o} + x^{o} + 70^{o} = 180^{o}$

$$\Rightarrow$$
 2x = 110, i.e., x = 55

Hence, \angle CDB = 55°

Ex.23 ABCD is a rhombus with $\angle ABC = 56^{\circ}$. Determine $\angle ACD$.

Sol. ABCD is a parallelogram



$$\Rightarrow \angle ABC = \angle ADC$$

$$\Rightarrow \angle ADC = 56^{\circ} \quad [\because \angle ABC = 56^{\circ} \text{ (Given)}]$$

$$\Rightarrow \angle ODC = 28^{\circ} \quad [\because \angle ODC = \frac{1}{2} \angle ADC]$$

Now, \triangle OCD we have,

$$\angle$$
OCD + \angle ODC + \angle COD = 180°

$$\Rightarrow \angle ODC + 28^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 \angle OCD = 62° \Rightarrow \angle ACD = 62°.

- ♦ The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.
- The line drawn through the mid-point of one side of a triangle, parallel to another side, intersects the third side at its mid-point.

Ex.24 Prove that the line segment joining the mid-points of the diagonals of a trapezium is parallel to each of the parallel sides and is equal to half the difference of these sides.

Sol. Given: A trapezium ABCD in which AB || DC and P and Q are the mid-points of its diagonals AC and BD respectively.

To Prove:

(i) PQ || AB or DC

(ii) PQ =
$$\frac{1}{2}$$
 (AB – DC)

Construction: Join DP and produce DP to meet AB in R.

Proof : Since $AB \parallel DC$ and transversal AC cuts them at A and C respectively.

$$\angle 1 = \angle 2$$
 (i)

[: Alternate angles are equal]

Now, in Δ s APR and DPC, we have

$$\angle 1 = \angle 2$$
 [From (i)]

AP = CP [: P is the mid-point of AC]

and, $\angle 3 = \angle 4$ [Vertically opposite angles] So, by ASA criterion of congruence

$$\Delta APR \cong \Delta DPC$$

$$\Rightarrow$$
 AR = DC and PR = DP(ii)

∴ Corresponding parts of congruent triangles are equal

In $\triangle DRB$, P and Q are the mid-points of sides DR and DB respectively.

$$\Rightarrow$$
 PQ || AB

[: RB is a part of AB]

$$\Rightarrow$$
 PQ || AB and DC [:: AB || DC (Given)]

This proves (i).

Again, P and Q are the mid-points of sides DR and DB respectively in ΔDRB .

$$\therefore$$
 PQ = $\frac{1}{2}$ RB \Rightarrow PQ = $\frac{1}{2}$ (AB – AR)

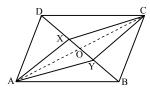
$$\Rightarrow$$
 PQ = $\frac{1}{2}$ (AB – DC) [From (ii), AR = DC]

This proves (ii).

- A diagonal of a parallelogram divides it into two triangles of equal area.
- ♦ For each base of a parallelogram, the corresponding altitude is the line segment from a point on the base, perpendicular to the line containing the opposite side.
- ♦ Parallelograms on the same base and between the same parallels are equal in area.
- A parallelogram and a rectangle on the same base and between the same parallels are equal in area
- ♦ The area of a parallelogram is the product of its base and the corresponding altitude.
- Parallelograms on equal bases and between the same parallels are equal in area.

❖ EXAMPLES ❖

Ex.25 In the adjoining figure, ABCD is parallelogram and X, Y are the points on diagonal BD such that DX = BY. Prove that CXAY is a parallelogram.



Sol. Join AC, meeting BD at O.

Since the diagonals of a parallelogram bisect each other, we have OA = OC and OD = OB.

Now,
$$OD = OB$$
 and $DX = BY$

$$\Rightarrow$$
 OD – DX = OB – BY \Rightarrow OX = OY

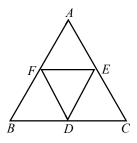
Now,
$$OA = OC$$
 and $OX = OY$

- :. CXAY is a quadrilateral whose diagonals bisect each other.
- ∴ CXAY is a ||gm
- **Ex.26** Prove that the four triangles formed by joining in pairs, the mid-points of three sides of a triangle, are concurrent to each other.
- **Sol.** Given: A triangle ABC and D,E,F are the midpoints of sides BC, CA and AB respectively.

To Prove:

$$\triangle$$
 AFE \cong \triangle FBD \cong \triangle EDC \cong \triangle DEF.

Proof: Since the segment joining the midpoints of the sides of a triangle is half of the third side. Therefore,



$$DE = \frac{1}{2}AB \implies DE = AF = BF \quad (i)$$

$$EF = \frac{1}{2}BC \implies EF = BD = CD$$
 (ii)

$$DF = \frac{1}{2}AC \implies DF = AE = EC$$
(iii)

Now, in Δ s DEF and AFE, we have

$$DE = AF$$
 [From (i)]

$$DF = AE$$
 [From (ii)]

and,
$$EF = FE$$
 [Common]

So, by SSS criterion of congruence,

$$\Delta$$
 DEF \cong Δ AFE

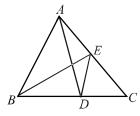
Similarly, Δ DEF $\cong \Delta$ FBD and Δ DEF $\cong \Delta$ EDC

Hence. \triangle AFE \cong \triangle FBD \cong \triangle EDC \cong \triangle DEF

- **Ex.27** In fig, AD is the median and DE \parallel AB. Prove that BE is the median.
- **Sol.** In order to prove that BE is the median, it is sufficient to show that E is the mid-point of AC.

Now, AD is the median in $\triangle ABC$

 \Rightarrow D is the mid-point of BC.



Since DE is a line drawn through the midpoint of side BC of Δ ABC and is parallel to AB (given). Therefore, E is the mid-point of AC. Hence, BE is the median of Δ ABC.

Ex.28 Let ABC be an isosceles triangle with AB = AC and let D,E,F be the mid-points of BC, CA and AB respectively. Show that AD \perp FE and AD is bisected by FE.

Sol. Given: An isosceles triangle ABC with D, E and F as the mid-points of sides BC, CA and AB respectively such that AB = AC. AD intersects FE at O.

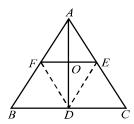
To Prove : AD \perp FE and AD is bisected by FE.

Constructon: Join DE and DF.

Proof: Since the segment joining the mid-points of two sides of a triangle is parallel to third side and is half of it. Therefore,

DE || AB and DE =
$$\frac{1}{2}$$
 AB

Also, DF || AC and DF =
$$\frac{1}{2}$$
 AC



 $But_AB = AC$

[Given]

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}AC \Rightarrow DE = DF$$
 (i)

Now, DE =
$$\frac{1}{2}$$
 AB \Rightarrow DE = AF (ii)

and,DF =
$$\frac{1}{2}$$
AC \Rightarrow DF = AE(iii)

From (i), (ii) and (iii) we have

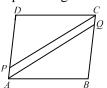
$$DE = AE = AF = DF$$

- \Rightarrow DEAF is a rhombus.
- ⇒ Diagonals AD and FE bisect each other at right angle.

 $AD \perp FE$ and AD is bisected by FE.

Ex.29 ABCD is a parallelogram. P is a point on AD such that $AP = \frac{1}{3}$ AD and Q is a point on BC such that $CQ = \frac{1}{3}$ BP. Prove that AQCP is a parallelogram.

Sol. ABCD is a parallelogram.



 \Rightarrow AD = BC and AD || BC

$$\Rightarrow \frac{1}{3}AD = \frac{1}{3}BC \text{ and } AD \parallel BC$$

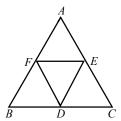
$$\Rightarrow$$
 AP = CQ and AP || CQ

Thus, APCQ is a quadrilateral such that one pair of opposite side AP and CQ are parallel and equal.

Hence, APCQ is a parallelogram.

Ex.30 In fig. D,E and F are, respectively the midpoints of sides BC, CA and AB of an equilateral triangle ABC. Prove that DEF is also an equilateral triangle.

Sol. Since the segment joining the mid-points of two sides of a triangle is half of the third side. Therefore, D and E are mid-points of BC and AC respectively.



$$\Rightarrow DE = \frac{1}{2}AB \qquad \dots (i)$$

E and F are the mid-points of AC and AB respectively.

$$\therefore EF = \frac{1}{2}BC \qquad (ii)$$

F and D are the mid-points AB and BC respectively.

$$\Rightarrow$$
 FD = $\frac{1}{2}$ AC

Now, \triangle ABC is an equilateral triangle

$$\Rightarrow$$
 AB = BC = CA $\Rightarrow \frac{1}{2}AB = \frac{1}{2}BC = \frac{1}{2}CA$

$$\Rightarrow$$
 DE = EF = FD

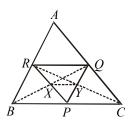
Hence, ΔDEF is an equilateral triangle.

Ex.31 P,Q and R are, respectively, the mid-points of sides BC, CA and AB of a triangle ABC. PR and BQ meet at X. CR and PQ meet at Y.

Prove that
$$XY = \frac{1}{4}BC$$

Sol. Given: A ΔABC with P,Q and R as the mid-points of BC, CA and AB respectively. PR and BQ meet at X and CR and PQ meet at Y.

Construction: Join "X and Y.



Proof: Since the line segment joining the midpoints of two sides of a triangle is parallel to the third side and is half of it. Therefore, Q and R are mid-points of AC and AB respectively.

$$\therefore$$
 RQ || BC and RQ = $\frac{1}{2}$ BC (i)

$$\begin{bmatrix} \therefore P \text{ is the mid - point} \\ \text{of BC} \therefore \frac{1}{2}BC = BP \end{bmatrix}$$

- \Rightarrow RQ || BP and RQ = BP
- ⇒ BPQR is a parallelogram.

Since the diagonals of a parallelogram bisect each other.

: X is the mid-point of PO.

 $\begin{bmatrix} \because X \text{ is the point of intersection of} \\ \text{diagonals BQ and PR of } \end{bmatrix}^{\text{gm}} BPQR$

Similarly, Y is the mid-point of PQ.

Now, consider $\triangle PQR$. XY is the line segment joining the mid-points of sides PR and PQ.

$$\therefore XY = \frac{1}{2} RQ \qquad \dots (i)$$

But
$$RQ = \frac{1}{2}BC$$
 [From (i)]

Hence,
$$XY = \frac{1}{4}BC$$
.

- **Ex.32** Show that the quadrilateral, formed by joining the mid-points of the sides of a square, is also a square.
- **Sol.** Given: A square ABCD in which P, Q, R, S are the mid-points of sides AB, BC, CD, DA respectively. PQ, QR, RS and SP are joined.

To Prove: PQRS is a square.

Construction: Join AC and BD.

Proof: In $\triangle ABC$, P and Q are the mid-points of sides AB and BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC (i)

In \triangle ADC, R and S are the mid-points of CD and AD respectively.

$$\therefore$$
 RS || AC and RS = $\frac{1}{2}$ AC(ii)

From (i) and (ii), we have

$$PQ \parallel RS$$
 and $PQ = RS$ (iii)

Thus, in quadrilateral PQRS one pair of opposite sides are equal and parallel.

Hence, PQRS is a parallelogram.

Now, in Δ s PBQ and RCQ, we have

$$PB = RC$$

$$\begin{bmatrix} :: ABCD, \text{ is a square} :: AB = BC = CD = DA \\ \Rightarrow \frac{1}{2}AB = \frac{1}{2}CD \text{ and } \frac{1}{2}AB = \frac{1}{2}BC \end{bmatrix}$$

$$BQ = CQ \quad [\Rightarrow PB = CR \text{ and } BQ = CQ]$$

and
$$\angle PBQ = \angle RCQ$$
 [Each equal to 90°]

So, by SAS criterion of congruence

$$\Delta PBO \cong \Delta RCO$$

$$\Rightarrow PQ = QR$$
(iv)

[: Corresponding parts of congruent Δs are equal]

From (iii) and (iv), we have

$$PO = OR = RS$$

But,PQRS is a ||gm.

$$OR = PS$$

So,
$$PQ = QR = RS = PS$$
(v)

Now,
$$PQ \parallel AC$$
 [From (i)]

Since P and S are the mid-points of AB and AD respectively.

$$\Rightarrow$$
 PM || MO(vii)

Thus, in quadrilateral PMON, we have

So, PMON is a parallelogram.

$$\Rightarrow \angle MPN = \angle MON$$

$$\Rightarrow \angle MPN = \angle BOA \quad [\because \angle MON = \angle BOA]$$

$$\Rightarrow \angle MPN = 90^{\circ}$$

z : Diagonals of square are
$$\perp$$
 : AC \perp BD \Rightarrow \angle BOA = 90°

$$\Rightarrow \angle OPS = 90^{\circ}$$

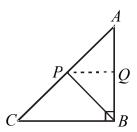
Thus, PQRS is a quadrilateral such that PQ = QR = RS = SP and $\angle QPS = 90^{\circ}$.

Hence, PQRS is a square.

- Ex.33 \triangle ABC is a triangle right angled at B; and P is the mid-point of AC. Prove that PB = PA = $\frac{1}{2}$ AC.
- **Sol.** Given: $\triangle ABC$ right angled at B, P is the midpoint of AC.

To Prove : PB = PA =
$$\frac{1}{2}$$
 AC.

Construction : Through P draw PQ \parallel BC meeting AB at Q.



Proof: Since PQ || BC. Therefore,

$$\angle$$
 AQP = \angle ABC [Corresponding angles]

$$\Rightarrow \angle AQP = 90^{\circ}$$

$$[\because \angle ABC = 90^{\circ}]$$

But,
$$\angle AQP + \angle BQP = 180^{\circ}$$

[∵ ∠AQP & ∠BQP are angles of a linear pair]

$$\therefore$$
 90° + \angle BQP = 180°

$$\Rightarrow \angle BOP = 90^{\circ}$$

Thus,
$$\angle AQP = \angle BQP = 90^{\circ}$$

Now, in \triangle ABC, P is the mid-point of AC and PQ || BC. Therefore, Q is the mid-point of AB i.e, AQ = BQ.

Consider now Δs APQ and BPQ.

we have,
$$AQ = BC$$
 [Proved above]

$$\angle AOP = \angle BOP$$
 [From (i)]

and,
$$PQ = PQ$$

So, by SAS cirterion of congruence

$$\triangle$$
 APQ \cong \angle BPQ

$$\Rightarrow$$
 PA = PB

Also,

$$PS = \frac{1}{2}AC$$
, since P is the mid-point of AC

Hence,
$$PA = PB = \frac{1}{2}AC$$
.

- **Ex.34** Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a rectangle is a rhombus.
- **Sol.** Given: A rectangle ABCD in which P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively. PQ, QR, RS and SP are joined.

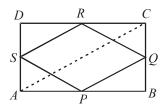
To Prove: PQRS is rhombus.

Construction: Join AC.

Proof: In $\triangle ABC$, P and Q are the mid-points of sides AB and BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC (i)

In \triangle ADC, R and S are the mid-points of CD and AD respectively.



$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC (ii)

From (i) and (ii), we get

$$PQ \parallel SR \text{ and } PQ = SR$$
(iii)

 \Rightarrow PQRS is a parallelogram.

Now, ABCD is a rectangle.

$$\Rightarrow AD = BC \Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$$

$$\Rightarrow$$
 AS = BQ(iv)

In Δs APS and BPQ, we have

$$AP = BP$$
 [: P is the mid-point of AB]

$$\angle PAS = \angle PBQ$$
 [Each equal to 90°]

and,
$$AS = BQ$$
 [From (iv)]

So, by SAS criterion of congruence

$$\triangle APS \cong \triangle BPQ$$

$$PS = PQ \qquad \dots (v)$$

[: Corresponding parts of congruent triangles are equal]

From (iii) and (v), we obtain that PQRS is a parallelogram such that PS = PQ i.e., two adjacent sides are equal.

Hence, PQRS is a rhombus.

IMPORTANT POINTS TO BE REMEMBERED

- 1. Sum of the angles of a quadrilateral is 360°.
- **2.** A diagonal of a parallelogram divides it into two congruent triangles.
- **3.** Two opposite angles of a parallelogram are equal.
- **4.** The diagonals of a parallelogram bisect each other.
- **5.** In a parallelogram, the bisectors of any two consecutive angles intersect at right angle.
- **6.** If a diagonal of a parallelogram bisects one of the angles of the parallelogram it also bisects the second angle.
- 7. The angles bisectors of a parallelogram form a rectangle.
- **8.** A quadrilateral is a parallelogram if its opposite sides are equal.
- **9.** A quadrilateral is a parallelogram iff its opposite angles are equal.
- **10.** The diagonals of a quadrilateral bisect each other, iff it is a parallelogram.
- **11.** A quadrilateral is a parallelogram if its one pair of opposite sides are equal and parallel.
- 12. Each of the four angles of a rectangle is a right angle.

- **13.** Each of the four sides of a rhombus of the same length.
- 14. The diagonals of a rectangle are of equal length.
- **15.** Diagonals of a parallelogram are equal if and only if it is a rectangle.
- **16.** The diagonals of a rhombus are perpendicular to each other.
- **17.** Diagonals of a parallelogram are perpendicular if and only if it is a rhombus.
- **18.** The diagonals of a square are equal and perpendicular to each other.
- **19.** If the diagonals of a parallelogram are equal and intersect at right angle, then it is a square.
- **20.** The line segment joining the mid-points of any two sides of a triangle is parallel to the third side and equal to half of it.
- **21.** A line through the mid-point of a side of a triangle parallel to another side bisects the third side.
- **22.** The quadrilateral formed by joining the midpoints of the sides of a quadrilateral, in order, is a parallelogram.