
Gravitation

INTRODUCTION

The motion of celestial bodies such as the sun, the
moon, the earth and the planets etc. has been a
subject of fascination since time immemorial. Indian
astronomers of the ancient times have done brilliant
work in this field, the most notable among them being
Arya Bhatt the first person to assert that all planets
including the earth revolve round the sun.

A millennium later the Danish astronomer Tycobrahe
(1546-1601) conducted a detailed study of planetary
motion which was interpreted by his pupil Johnaase
Kepler (1571-1630), ironically after the master
himself had passed away. Kepler formulated his
important findings in three laws of planetary motion

UNIVERSAL LAW OF GRAVITATION

According to this law "Each particle attracts every
other particle. The force of attraction between them
is directly proportional to the product of their masses
and inversely proportional to square of the distance
between them".
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where G = 6.67 × 10–11 Nm2 kg–2 is the universal

gravitational constant. This law holds good

irrespective of the nature of two objects (size, shape,
mass etc.) at all places and all times. That is why it is

known as universal law of gravitation.

Dimensional  formula of G :
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Newton's Law of gravitation in vector form :
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Important characteristics of gravitational force

(i) Gravitational force between two bodies form an
action and reaction pair i.e. the forces are equal in
magnitude but opposite in direction.

(ii) Gravitational force is a central force  i.e. it acts along
the line joining the centres of the two interacting
bodies.

(iii) Gravitational force between two bodies is
independent of the nature of the medium, in which
they lie.

(iv) Gravitational force  between two bodies does not
depend upon the presence of other bodies.

(v)  Gravitational force is negligible in case of light bodies
but becomes appreciable in case of  massive bodies
like stars and planets.

(vi) Gravitational force is long range-force i.e.,
gravitational force between two bodies is effective
even if their separation is very large. For example,
gravitational force between the sun and the earth is
of the order of 1027 N although distance between
them is 1.5 × 107 km

Ex.1 The centres of two identical spheres are at a distance
1.0 m apart. If the gravitational force between them
is 1.0 N, then find the mass of each sphere.

(G = 6.67 × 10–11 m3 kg–1 sec–1)

Sol. Gravitational force F = 2r
m.Gm

on substituting F = 1.0 N , r = 1.0 m and

G = 6.67 × 10–11 m3 kg–1 sec–1

we get m = 1.225 × 105 kg

Ex-2 Two particles of masses m
1
 and m

2
, initially at rest

at infinite distance from each other, move under the
action of mutual gravitational pull. Show that at any
instant their relative velocity of approach is

R/)mm(G2 21  , where R is their separation at

that instant.

Sol. The gravitational force of attraction on m
1
 due to m
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at a separation r is
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Therefore, the acceleration of m
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Similarly, the acceleration of m
2
 due to m

1
 is

a
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the negative sign being put as a
2
 is directed opposite

to a
1
. The relative acceleration of approach is
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If v is the relative velocity, then

a = dt
dv

 = dt
dr

dr
dv

.

But – dt
dr

 = v (negative sign shows that r decreases

with increaing t ).

 a = – dr
dv

v.. .... (2)

From (1) and (2), we have
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Integrating, we get
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At r = , v = 0 (given), and so C = 0.
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Ex-3 Three identical bodies of mass M are located at

the vertices of an equilateral triangle with side L. At
what speed must they move if they all revolve under
the influence of one another's gravity in a circular
orbit circumscribing the triangle while still preserving
the equilateral triangle ?

Sol. Let A, B and C be the three masses and O the centre
of the circumscribing circle. The radius of this circle
is

R = 
2
L

 sec 30° = 3
2

2
L
  = 3

L
.

Let v be the speed of each mass M along the circle.
Let us consider the motion of the mass at A. The
force of gravitational attraction on it due to the masses
at B and C are
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The resultant force is therefore
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 along AD.

This, for preserving the triangle, must be equal to
the necessary centripetal force.

That is ,
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[ R = L/ 3 ]    or   v = 
L
GM

Ex.4 Find out the time period of circular motion in above
example

Ans.
GM3
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Ex.- 5 A solid sphere of lead has mass M and radius R.A
spherical hollow is dug out from it (see figure). Its
boundary passing through the centre and also
touching the boundary of the solid sphere. Deduce
the gravitational force on a mass m placed at P, which
is distant r from O along the line of centres.

Sol. Let O be the centre of the sphere and O' that of the
hollow (figure). For an external point the sphere
behaves as if its entire mass is concentrated at its
centre. Therefore, the gravitatinal force on a mass
`m` at P due to the original sphere (of mass M) is

F = G 2r
Mm

, along PO.

The diameter of the smaller sphere (which would be
cut off) is R, so that its radius OO' is R/2. The force
on m at P due to this sphere of mass M' (say) would
be

F = G 2)r(

mM

2
R


 along PO.

[ distance PO = r – 2
R ]

As the radius of this sphere is half of that of the original
sphere, we have

M = 8
M .

 F = G 2)r(8
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2
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 along PO.

As both F and F point along the same direction, the
force due to the hollowed sphere is
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GRAVITATIONAL FIELD

The space surrounding the body within which its
gravitational force of attraction is experienced by
other bodies is called gravitational field. Gravitational
field is very similar to electric field in electrostatics
where charge 'q' is replaced by mass 'm' and electric
constant 'K' is replaced by gravitational constant 'G'.
The intensity of gravitational field at a points is defined
as the force experienced by a unit mass placed at
that point.

E = 
m
F

 = 2r
GM

The unit of the intensity of gravitational field is N kg–

1. In vector form r̂
r
GME 2



Dimensional formula of intensity of gravitational field
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Ex-6 Find the relation between the gravitational field on
the surface of two planets A & B of masses m

A
, m

B

& radius R
A
 & R

B
 respectively if

(i) they have equal mass

(ii) they have equal (uniform) density

Let E
A
 & E

B
 be the gravitational field intensities on

the surface of planets A & B.

then, E
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GRAVITATIONAL POTENTIAL

The gravitational potential at a point in the
gravitational field of a body is defined as the amount
of work done by an external agent in bringing a body
of unit mass from infinity to that point, slowly (no
change in kinetic energy). Gravitational potential is
very similar to electric potential in electrostatics.

Let the unit mass be displaced through a distance dr
towards mass M, then work done is given by

dW = F dr  = dr
r
GM
2 .  r

GMdr
r
GMdW

r

2


  
.

Thus gravitational potential, 
r
GMV  .

The unit of gravitational potential is J kg–1.
Dimensional Formula of gravitational potential

= ]M[
]TML[

mass
Work 22 

  = [M°L2 T–2].

RELATION BETWEEN GRAVITATIONAL

FIELD AND POTENTIAL

The work done by an external agent to move unit
mass from a point to another point in the direction of
the field E, slowly through an infinitesimal distance dr
= Force by external agent × distance moved = – Edr.

Thus dV = – Edr       E = – 
dr
dV

.

Therefore, gravitational field at any point is equal to
the negative gradient at that point.

Ex.7 The gravitational field in a region is given by E
  = –

(20N/kg) )ĵî(  . Find the gravitational potential at

the origin (0, 0) – (in J/kg)

(A*) zero (B) 20 2

(C) – 20 2 (D) can not be defined
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Sol. V = –  dr.E  =   dy.Eydx.Ex

= 20x + 20y

at origin V = 0

Ex.8 In above problem, find the gravitational potential
at a point whose co-ordinates are (5, 4) –    (in J/kg)

(A) – 180 (B*) 180
(C) – 90 (D) zero

Sol. V = 20 × 5 + 20 × 4 = 180 J/kg

Ex.9 In the above problem, find the work done in shifting
a particle of mass 1 kg from origin (0, 0) to a point
(5, 4) – (In J)

(A) – 180 (B*) 180
(C) – 90 (D) zero

Sol. W = m (V  – V
i
)   = 1 (180 – 0) = 180 J

GRAVITATIONAL POTENTIAL &

FIELD FOR DIFFERENT OBJECTS

I. Ring. V = 2/122 )ra(orx
GM




      &   E = r̂
)ra(
rGM
2/322 



       or  E = – 2x
cosGM 

Gravitational field is maximum at a distance,

r = ± 2a  and it is – 2a33GM2

II. A linear mass of finite length on its axis :

(a) Potential : V = – 
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(b) Field intensity : E = – Ld
GM

 sin 
0

   = 22 dLd
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

III. An infinite uniform linear mass distribution of

linear mass density , Here 
0
 = 

2


.

And noting that  = L2
M

 in case of a finite rod

we get, for field intensity      E = d
G2 

Potential for a mass-distribution extending to infinity
is not defined. However even for such mass
distributions potential-difference is defined. Here
potential difference between points P

1
 and P

2

respectively at distances d
1
 and d

2
 from the infinite

rod,   v
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 = 2G n 
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d
d

IV. Uniform Solid Sphere

(a)  Point P inside the shell.  r < a, then

 V = )ra3(
a2
GM 22
3   & E = – 3a

rGM
,

and at the centre V = – 
a2
GM3

 and E = 0
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(b) Point P outside the shell.  r > a, then   V = 
r
GM



& E = – 2r
GM

V. Uniform Thin Spherical Shell

(a)  Point P Inside the shell.

r < a , then V = 
a
GM

 & E = 0

(b)  Point P outside shell.

r > a, then  V = 
r
GM

 &   E = – 2r
GM

VI. Uniform Thick Spherical Shell

(a)  Point outside the shell

V = – G
r
M

 ;  E = – G 2r
M

(b)  Point inside the Shell
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(c)  Point between the two surface
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Ex.10 Calculate the gravitational field intensity at the
center of the base of a hollow hemisphere of mass
M and radius R. (Assume the base of hemisphere to
be open)

Sol. We consider the shaded elemental ring  of mass, dm

= )R2(
M

2 2  R sin (Rd)

Field due to this ring at 0,

 dE = 3R
cosRGdm 

(see formulae for field due to a ring)

or, dE = 2R
GM

 sin  cos  d

Hence,  E = 
 2/

0

dE  = 
 2/

0
2R

GM
 sin  cos  d

or, E = 2R2
GM
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Ex.11 Calculate the gravitational field intensity and

potential at the centre of the base of a solid
hemisphere of mass m, radius R.

Sol. We consider the shaded elemental disc of radius R
sin and thickness  Rd

Its mass, dM = 
3R

3
2
M


 (R sin )2 (Rd sin )

        or  dM = 
2
M3

 sin3  d

Field due to this plate at O,

dE  = 2)sinR(
)cos1(MGd2


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(see field due to a uniform disc)

or dE = 2R
d)cos1(sinGM3 
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  or E = 2R2
GM3

Now potential due to the element under consideration
at the centre of the base of the hemisphere,

dV = 
r
GdM2

 (cosec  – cot )

(see potential due to a circular plate)

or, dV = )sinR(
d)cotec(cossinGM3 3


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or, v = – 
R2
GM3

Aliter : Consider a hemispherical shell of radius r
and thickness dr

Its mass,dm = )drr2(
R

3
2
M 2

3



 or,, dm = 3

2

R
rdrM3

Since all points of this hemispherical shell are at the
same distance r from O. Hence potential at O due
to it is ,

dV = 
r
Gdm

 = 3R
GMrdr3

 V = 
R

0

dv  = 
R2
GM3

GRAVITATIONAL POTENTIAL ENERGY
Gravitational potential energy of two mass system
is equal to the work done by an external agent in
assembling them, while their initial separation was
infinity. Consider a body of mass m placed at a
distance x from another body of mass M. The
gravitational force of attraction between them is

given by, F = 2r
mGM

.
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Now, Let the body of mass m is displaced from
point. C to B through a distance 'dr' towards the
mass M, then work done by internal conservative
force (gravitational) is given by,

dW = F dr = 2r
mGM

 dr   dW 


r

2r
mGM

dr

 Gravitational potential energy, 
r

GMmU 

Special Cases:

(i) From above equation, it is clear that gravitational
potential energy of two mass system increases with
increase in separation (r) (i.e. it becomes less
negative).

(ii) Gravitational P.E. becomes maximum (or zero) at r
= .

(iii) If the body of mass m moves from a distance r
1
 to r

2

(r
1
 > r

2
), then work done or change in

gravitational P.E. is given by

dU = 
2

1

r

r
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r 12
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2
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r
1mGMdrr

Since r
1
 > r

2
, so change in gravitational P.E. of the

body is negative. It means, when the body is brought
near to the earth, P.E. of the earth-mass system
decrease.

(iv) When the body of mass m is moved from the surface

of earth (i.e., r
1
 = R

e
) to a height h  (i.e., r

2
 = R

e
 + h),

then change in P.E. of the earth-mass system s given

by

dU = – GM
e 
m 




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


 ee R
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hR
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= 
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Using binomial expansion  

dU = 2
e

e
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R
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Since g  = 2
e

e

R
GM

  then dU = mgh

Gravitational potential difference is defined as the

work done by an external agent to move a unit mass

from one point to the other point in the gravitational

field. According to the definition, E is the force

experienced by a unit mass at A. The direction of

this force is towards the body of mass M. Now the

work done to move the unit mass from A to B is

given by

dW = xd.F


= Edx cos 180º = – Edx

This work done is equal to the gravitational potential

difference (dV).

Where dx
dV

 is called potential gradient.
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Ex.12 Calculate the velocity with which a body must be
thrown vertically upward from the surface of the earth
so that it may reach a height of 10 R, where R is the
radius of the earth and is equal to 6.4 × 108 m.
(Earth's mass = 6 × 1024 kg, Gravitational constant
G = 6.7 × 10–11 nt-m2/kg2)

Sol. The gravitational potential energy of a body of mass
m on earth's surface is

U (R) = – 
R
MmG

where M is the mass of the earth (supposed to be
concentrated at its centre) and R is the radius of the
earth (distance of the particle from the centre of the
earth). The gravitational energy of the same body at
a height 10 R from earth's surface, i.e. at a distance
11R from earth's centre is

U (11R) = – 
R
MmG

 change in potential energy U(11R) – U(R)

= – R11
MmG

 – 







R
GMm

 = 
R

GMm
11
10

This difference must come from the initial kinetic
energy given to the body in sending it to that height.
Now, supose the body is thrown up with a vertical

speed v, so that its initial kinetic energy is 2
1

mv2.

Then  
2
1

mv2   = 
R

GMm
11
10

   or    v = 







R

GMm
11
20

.

Putting the given values :

v = 












 

)m104.6(11
)kg106()kg/mnt107.6(20

6

242211

   = 1.07 × 104 m/s.

Ex.13 Distance between centres of two stars is 10 a.
The masses of these stars are M and 16 M and their
radii are a & 2a resp. A body is fired straight from
the surface of the larger star towards the smaller
star. What should be its minimum initial speed to
reach the surface of the smaller star?

Sol. Let P be the point on the line joining the centres of
the two planets s.t. the net field at it is zero

Then,  22 )ra10(
M16.G

r
GM


  = 0  (10 a–r)2 = 16 r2

 10a – r = 4r r = 2a

Potential at point P, v
P
 = )ra10(

M16.G
r
GM






     = a2
GM5

a
GM2

a2
GM 




.

Now if the particle projected from the larger planet
has enough energy to cross this point, it will reach
the smaller planet.

For this, the K.E. imparted to the body must be just
enough to raise its total mechanical energy to a value
which is equal to P.E. at point P.

i.e. a8
GMm

a2
m)M16(Gmv

2
1 2 

  = mv
P

or,
a2
GMm5

a8
GM

a
GM8

2
v2 




 or,,

v2 = a4
GM45

 or,, v
min

 = a
GM5

2
3
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GRAVITATIONAL SELF-ENERGY

The gravitational self-energy of a body (or a system
of particles) is defined as the workdone by an
external agent in assembling the body (or system of
particles) from infinitesimal elements (or particles)
that are initially an infinite distance apart.

Gravitational self  energy of a system of n
particles

Potential energy of n particles at an average distance
'r' due to their mutual gravitational attraction is equal
to the sum of the potential energy of all pairs of
particle, i.e.,

U
s
 = – G 

 ij
pairsall ij

ji

r
mm

This expression can be written as

U
s
 = –   





ni

1i

G
2

1 





nj

ij
1j ij

ji

r

mm

If consider a system of 'n' particles, each of same
mass 'm' and seperated from each other by the same
average distance 'r', then self energy

     or   U
s
 = – 



n

1i

G
2
1 









n

ij
1j ji

2

r
m

Thus on the right handside 'i' comes 'n' times while 'j'
comes (n – 1) times. Thus

 U
s
 = – 

2
1

Gn (n – 1) 
r
m2

Gravitational Self energy of a Uniform Sphere
(star)

     U
shell

 = – G 
r

drr4r
3
4 23 



 

where = 
3R

3

4

M









  = – 
3
1

 G (4)2 r4 dr,,

U
star

 = – 
3
1

G (4)2 
R

0

4 drr

  = – 
3
1

G (4)2

R

0

5

5
r












  = – 
5
3

G 
2

3R
3
4










R
1

.

 U
star

 = – 
5
3

R
GM2

ACCELERATION DUE TO GRAVITY

It is the acceleration, a freely falling body near the
earth’s surface acquires due to the earth’s
gravitational pull. The property by virtue of which a
body experiences or exerts a gravitational pull on
another body is called gravitational mass m

G
, and

the property by virtue of which a body opposes any
change in its state of rest or uniform motion is called

its inertial mass mthus if E

 is the gravitational field

intensity due to the earth at a point P, and g

 is

acceleration due to gravity at the same point, then

m
g

 = m

GE

.

Now the value of inertial & gravitational mass happen
to be exactly same to a great degree of accuracy for

all bodies. Hence, g

 = E



The gravitational field intensity on the surface of earth
is therefore numerically equal to the acceleration due
to gravity (g), there. Thus we get,

2
e

e

R
GMg 

where , M
e
 = Mass of earth

        R
e
 = Radius of earth

Note : Here the distribution of mass in the earth is
taken to be spherical symmetrical so that its entire
mass can be assumed to be concentrated at its center
for the purpose of calculation of g.
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VARIATION OF ACCELERATION

DUE TO GRAVITY

(a) Effect of Altitude

Acceleration due to gravity on the surface of the

earth is given by, g = 2
e

e

R
GM

Now, consider the body at a height 'h' above the
surface of the earth, then the acceleration due to
gravity at height 'h' given by

g
h
 = 2

e

e

hR
GM
 = g 

2

eR
h1













~ g 









eR
h21  when h << R.

The decrease in the value of 'g' with height h = g – g
h

= 
eR

gh2
. Then percentage decrease in the value of

'g' = %100
R

h2100
g
gg

e

h 


(b) Effect of depth

The gravitational pull on the surface is equal to its

weight i.e. mg = 2
e

e

R
mGM

  mg = 2
e

3
e

R

mR
3
4G 

  or

         g = 3
4
G R

e
....(1)

When the body is taken to a depth d, the mass of
the sphere of radius (R

e
 – d) will only be effective

for the gravitational pull and the outward shall will
have no resultant effect on the mass.  If the
acceleration due to gravity on the surface of the solid
sphere is g

d
, then

g
d
 = 3

4
 G (R

e
 – d) 

    ...............(2)

By dividing equation (2) by equation (1)

g
d
 = g 










eR
d1

IMPORTANT POINTS

(i) At the center of the earth, d = R
e
, so g

centre
 = g











e

e

R
R1  = 0. Thus weight (mg) of the body at the

centre of the earth is zero.

(ii) Percentage decrease in the value of 'g' with the depth

= 100
g
gg d 






 

 = 100
R
d

e
 .

(c)  Effect of the surface of Earth

The equatorial radius is about 21 km longer than its
polar radius.

We know, g = 2
e

e

R
GM

 Hence g
pole

 > g
equator

. The

weight of the body increase as the body taken from
the equator to the pole.

(d) Effect of rotation of the Earth

The earth rotates around its axis with angular velocity
. Consider a particle of mass m at latitude . The
angular velocity of the particle is also .
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According to parallelogram law of vector addition,

the resultant force acting on mass m along PQ is

F = [(mg)2 + (m2 R
e
 cos)2 + {2mg × m2 R

e

cos} cos (180 – )]1/2 = [(mg)2 + (m2 R
e
 cos)2

– (2m2 g2 R
e
 cos) cos]1/2

   = mg 

2/1

2
2

e2
22

e cos
g

R2cos
g

R1


























 


At pole  = 90°   g
pole

 = g  ,   At equator  = 0 

g
equator

 = g 










 


g
R1

2
e

. Hence g
pole

 > g
equator

 If the body is taken from pole to the equator, then

g = g 








 


g
R

1
2

e
 .  Hence % change in weight =

100
g

R
100

mg
Rm

100
mg

g
R

1mgmg
2

e
2

e

2
e

















 


ESCAPE SPEED

The minimum speed required to project a body from
the surface of the earth so that it never returns to the
surface of the earth is called escape speed.

A body thrown with escape speed goes out of the
gravitational pull of the earth.

Work done to displace the body from the surface of
the earth

(r = R
e
) to infinity (r = ) is given by

dW  = 


eR
2
e dr

r
mGM

  or W = GM
e
 m 



eR
2 dr

r
1

= – GM
e
 m 










eRr
1

 = – GM
e
  m 










 eR
11



W = 
e

e

R
mGM

Let v
e
 be the escape speed of the body of mass m,

then kinetic energy of the body is given by

e

e2
e R

mGMmv
2
1

  v
e
 = eRg2  = 11.2 km s–1.

Important Points

1. Escape speed depends on the mass and size of the
planet. That is why escape velocity on the Jupiter is
more than on the earth.

2. Escape speed is independent of the mass of the
body.

3. Any body thrown upward with escape speed start
moving around the sun.

MOTION OF SATELLITES

AND KEPLER LAWS

A heavenly body revolving around a planet in an
orbit is called natural satellite. For example, moon
revolves around the planet the earth, so moon is the
satellite of the earth. Their motions can be sttudied
with the help of kepler's laws, as stated :
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I . L aw of or bit  :   Each Planet moves arround the sun

in an elliptical orbit with the sun at one of the foci as
shown in figure. The eccentricity of an ellipse is
defined as the ratio of the distance SO and AO i.e. e

 = AO
SO

 e = a
SO

SO = ea

The distance of closest approach with the sun at F
1

is AS. This distance is called perigee. The greatest
distance (BS) of the planet from the sun is called
apogee.

Perigee (AS) = AO – OS = a – ea = a (1 – e)

Apogee (BS) = OB + OS = a + ea = a (1 + e)

II . Law of Areas :  The line joining the sun and a planet
sweeps out equal areas in equal intervals of time. A
planet takes the same time to travel from A to B as
from C to D as shown in figure. (The shaded areas
are equal). Naturally the planet has to move faster
from C to D. The law of areas is identical with the
law of conservation of angular momentum.

Areal velocity   = 
time

sweptarea
 = dt

)rd(r
2
1



= 2
1

 r2

dt
d

 = constant    Hence 
2
1

 r2  = constant.

III. Law of periods :  The square of the time for the
planet to complete a revolution about the sun is
proportional to the cube of semimajor axis of the
elliptical orbit.

i.e. Centripetal force = Gravitational force

2

2

R
GMm

R
vm

  2v
R

GM


Now, speed of the planet is

v  =  T
R2

periodTime
orbitcirculartheofnceCircumfere 



Substituting value in above equation 

GM
R4Tor

T
R4

R
GM 32

2
2

22 





Since 








 
GM
4 2

 is constant,

 T2  R3   or  3

2

R
T

 = constant

Ex.14 A satellite is launched into a circular orbit 1600
km above the surface of the earth. Find the period
of revolution if the radius of the earth is R = 6400
km and the acceleration due to gravity is 9.8 m/sec2.
At what height from the ground should it be launched
so that it may appear stationary over a point on the
earth's equator ?

Sol. The orbiting period of a satellite at a height h from

earth's surface is T = 2

2/3

gR
r2

 where r = R + h

then,  T = 






 
g

hR
R

)hR(2

Here, R = 6400 km, h = 1600 km = R/4. Then

T = 











 

g
R

R
R2 4

R
4
R

   = 2(1 – 2J)3/2
g
R

Putting the given values : T = 2 × 3.14 ×










 
2

6

s/m8.9
m104.6

 (1.25)3/2  = 7092 sec   = 1.97 hours
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Now, a satellite will appear stationary in the sky over

a point on the earth's equator if its period of

revolution round the earth is equal to the period of

revolution of the earth round its own axis which is

24 hours. Let us find the height h of such a satellite

above the earth's surface in terms of the earth's

radius. Let it be nR. then

T = 






 
g
nRR

R
)RnR(2

   = 









g
R2  (1 + n)3./2

= 2 × 3.14 








 
2

6

sec/meter8.9
sec/meter104.6

 (1 + n)3/2

= (5075 sec) (1 + n)3/2 = (1.41hours) (1 + n)3/2

For T = 24 hours, we have

(24 hours) = (1.41) hours) (1 + n)3/2

or (1 + n)3/2 = 
41.1

24
 = 17

or 1 + n = (17)2/3 = 6.61  or   n = 5.61

The height of the geo-stationary satellite above the

earth's surface is nR = 5.61 × 6400 km

  = 3.59 × 104 km.

Ex.15 In a double star, two stars (one of mass m and

the other of 2m) distant d apart rotate about their

common centre of mass. Deduce an expression ofr

the period of revolution. Show that the ratio of their

angular momenta about the centre of mass is the

same as the ratio of their kinetic energies.

Sol. The centre of mass C will be at distances d/3 and

2d/3 from the masses 2m and m respectively. Both

the stars rotate round C in their respective orbits

with the same angular velocity . The gravitational

force acting on each star due to the other supplies

the necessary centripetal force.

The gravitational force on either star is 2d
m)m2(G

. If

we consider the rotation of the smaller star, the

centripetal force (m r2) is 














 2

3
d2m  and for

bigger star 










 
3

md2 2

 i.e.same

 2d
m)m2(G

 = 
2

3
d2m 








or  = 







3d

Gm3

Therefore, the period of revolution is given by  T =


2

 = 2  










Gm3
d3

The ratio of the angular momenta is

small

big

small

big

)(
)(









  = 2

2

3
d2m

3
d)m2(

















 = 
2
1

,

since  is same for both. The ratio of their kinetic

energies is 
small

big

small
2

big
2

)(

)(

2
1
2
1









 = 

2
1

,

which is the same as the ratio of their angular
momenta.

SATELLITE SPEED

(OR ORBITAL SPEED)

The speed required to put the satellite into its orbit
around the earth is called orbital speed.

The gravitational attraction between satellite and the
earth provides the necessary centripetal force.
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hR
vm

hR
mGM

e

2
0

2
e

e




   or hR
GMv

e

e2
0 


or, v
0
 = 

2
1

e

e

hR
GM











 =  
2
1

e

2
e

hR
Rg















When h << R
e
  then v

0
 = eRg

 v
0
 = 6104.68.9   = 7.92 × 103

 ms–1 = 7.92 km s–1

Time period of Satellite

Time period,

       T  = 
0

e

v
hR2

speedorbital
orbittheofnceCircumfere 



But  v
0
 = 

2
1

e

2
e

hR
Rg














 T = 

2
1

e

2
e

e

hR
Rg

hR2

















    = 
2
1

3
e

e g
hR

R
2











 

Height of the satellite above the earth's surface

Time period of satellite is given by,

T = 
2
1

3
e

e g
hR

R
2











 

T2 = g
hR

R
4 3

e
2
e

2 
   or (R

e
 + h)3 = 2

2
e

2

4
gRT



(R
e
 + h) = 

3
1

2

2
e

2

4
gRT












h = 

3
1

2

2
e

2

4
gRT












 – R

e

Energy of a Satellite

P.E. of a satellite of mass m revolving around the
earth in a circular orbit of the earth is given by

U = 
r

mGMe
 and  K.E. = 2

0mv
2
1

r
mGM

mvor
r

mGM
r

mv e2
02

e
2
0  .

Hence  K.E. = 
r2

mGMe

Total Energy E = U + K.E.

     = 
r

mGMe
 + 

r2
mGMe

   or   E = – 
r2

mGMe

Since total energy is negative, so it implies that satellite
is bound to the earth. If  satellite is  close to the
surface of the earth then total energy 

     E = – 
e

e
R2

mGM

GEO-STATIONARY SATELLITES

OR GEO-SYNCHRONOUS SATELLITES

(i) The time period of the satellite around the earth must
be equal to the rotational period of      the earth
(i.e. 24 hours.)

(ii) The direction of motion of the satellite must be same
as that of the earth. i.e. from west to east.

The height of the geio-stationary satellite from the
surface of the earth can be calculated from the

equation h = e

2
1

2

2
e

2
R

4
gRT














Now      T =  24 hours = 24 × 3600 s,

        R
e
 =  6.4 × 106 m, g = 9.8 ms–2

 h  = 6
2
1

2

262
104.6

4
8.9104.6360024




















or h = 35930 × 103 m = 35930 km.
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Uses of Artificial Satellites
Some important uses of artificial satellites are :

(i) They are used as communication satellites to send
messages to distant places.

(ii) They are used as weather satellites to forecast
weather.

(iii) They are used to explore the upper region of the
atmosphere.

(iv) They are used to telecast T.V. programs to distant
places.

(v) They are used to know the exact shape of the earth.

LAUNCHING OF AN ARTIFICIAL
SATELLITE AROUND THE EARTH

The satellite is placed upon the rocket which is
launched from the earth. After the rocket reaches its
maximum vertical height h, a spherical mechanism
gives a thrust to the satellite at point A (fig.) producing
a horizontal speed v. The total energy of the satellite
at A is thus.

E = 2mv
2
1

 – hR
GMm


The orbit will be an ellipse (closed path), a
parabola, or an hyperbola depending on whether
E is negative, zero, or positive. In all cases the
centre of the earth is at one focus of the  path. If
the energy is too low, the elliptical orbit will

intersect the earth and the satellite will fall back.
Otherwise it will keep on moving in a closed
orbit, or will escape from the Earth, depending
on the values of v and R.

                                 (a)

                                  (b)
Hence a satellite carried to a height h (<< R) and
given a horizontal speed of 8 km/sec will be placed
almost in a circular orbit around the earth (fig.) If
launched at less than 8 km/sec, it would get closer
and closer to the earth until it hits the ground. Thus 8
km/sec is the critical (minimum) speed.

(a) Orbits and Speed:
For a body on the earth’s surface, projected
horizontally with a speed v, the trajectory depends
on the value of its speed v.

Velocity (v) Trajectory

(i) Less than the orbital speed v < egR      (i) Body returns to the earth

(ii) Equal to orbital speed v = egR      (ii) Body acquires a near the earth circular orbit

(iii) Between orbital and escape     (iii) Body acquires an eiliptical orbit  with

speed egR  < v < egR2 the earth as the near focus

(iv) Equal to escape speed v = egR2                 (iv) Body just escapes the earth’s gravity along in a
parabolic path.

(v) Greater then escape speedv = egR2     (v) Body escape’s the earth’s gravity in ah hyperbolic
path.
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Ex.16 A rocket starts vertically upward with speed v

0
.

   Shown that its speed v at height h is given by

22
0 vv   = 

R
h1

hg2
 ,

where R is the radius of the earth and g is acceleration
due to gravity at earth's surface. Hence deduce an
expression for maximum height reached by a rocket
fired with speed 0.9 times the escape velocity.

Sol. The gravitational potential energy of a mass m on
earth's surface and that a height h is given by

U (R) = – 
R

GMm
 and U (R + h) = – 

hR
GMm


 U(R + h) – U(R) = – GMm 





 

 R
1

hR
1

      = R)hR(
GMmh
    =   

R
h1

hgm
      [ GM = gR2]

This increase in potential energy occurs at the cost
of kinetic energy which correspondingly decreases.
If v is the velocity of the rocket at height h, then the

decrease in kinetic energy is 22
0 mvmv

2
1

2
1  .

Thus,  22
0 mvmv

2
1

2
1   = 

R
h1

hgm
   ,

      or    22
0 vv   = 

R
h1

gh2


Let h
max

 be the maximum height reached by the
rocket, at which its velocity has been reduced to
zero. Thus, substituting v = 0 and h = h

max
 in the last

expression, we have

R
hmax1

hg2v max2
0




or 









R
h1v max2

0  = 2 gh
max

or  v
0

2 = h
max 












R
vg2

2
0

or   h
max

 = 
R
vg2

v
2
0

2
0



Now, it is given that  v
0
 = 0.9 × escape velocity

= 0.9 × )Rg2(

 h
max

 = 
R

Rg2)9.009(g2

Rg2)9.009(






          = R62.1g2
gR62.1

  = 38.0
R62.1

= 4.26 R

Ex- 17 For a particle projected in a transverse direction
from a height h above Earth’s surface, find the
minimum initial velocity so that it just grazes the
surface of earth path of this particle would be an
ellipse with center of earth as the farther focus, point
of projection as the apojee and a diametrically
opposite point on earth’s surface as perigee.

Sol. Suppose velocity of projection at point A is v
A
 & at

point B, the velocity of the particle is v
B
.

then applying Newton’s 2nd law at point A & B, we

get,
A
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Where 
A
 & 

B
 are radius of curvature of the orbit

at points A & B of the ellipse,
but 

A
 = 

B
 = (say).

Now applying conservation of energy at points A &
B
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or,  = 
hR2

)hR(R2

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 = 
rR

Rr2


 V
A

2 = 2
e

)hR(
GM



 = 2GM

e )Rr(r
R


where r = distance of point of projection from earth’s
centre = R + h.


