• MATHEMATICAL INDUCTION •

INTRODUCTION

Mathematical induction is a specialized form of deductive reasoning used to prove a fact about all the elements in an infinite set by performing a finite number of steps.

The process of drawing a valid general result from particular results is called the process of induction.

The principle of mathematical induction is a mathematical process which is used to establish the validity of a general result involving natural numbers.

STATEMENT

A sentence is called a statement if it is either true or false but not both.

For example, the sentence "Two plus five equals seven" is a statement because this sentence is true.

A statement concerning the natural number 'n' is generally denoted by P(n).

For example, if P(n) denotes the statement : "n(n + 1) is an even number," then

P(3) is the statement : "3(3+1) is an even number"

- and P(7) is the statement : "7(7 + 1) is an even number" etc.
- Here P(3) and P(7) are both true.

PRINCIPLE OF MATHEMATICAL INDUCTION

Theorem-I

If P(n) is a statement depending upon n, then to prove P(n) by induction, we proceed as follows :

- (i) Verify the validity of P(n) for n = 1
- (ii) Assume that P(n) is true for any positive integer m and then using it establish the validity of P(n) for n=m+1.

Then P(n) is true for each $n \in N$

Theorem-II

If P(n) is a statement depending upon n but beginning with any positive integer k, then to prove P(n) by Induction, we proceed as follows :

- (i) Verify the validity of P(n) for n = k.
- (ii) Assume that the P(n) is true for $n = m \ge k$. Then using it establish the validity of P(n) for n = m + 1. Then P(n) is true for each $n \ge k$

SOME USEFUL RESULT BASED ON PRINCIPLE OF MATHEMATICAL INDUCTION

For any natural number n

(i)
$$1+2+3+....+n = \Sigma n = \frac{n(n+1)}{2}$$

(ii)
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \sum n^2 = \frac{n(n+1)(2n)}{6}$$

(iii)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \Sigma n^3 = (\Sigma n)^2 = \left\{\frac{n(n+1)}{2}\right\}^2$$

MATHS FOR JEE MAIN & ADVANCED

- (iv) $2+4+6+\ldots+2n=\Sigma 2n=n(n+1)$
- (v) $1+3+5+....+(2n-1)=\Sigma(2n-1)=n^2$
- (vi) $x^n y^n = (x y) (x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + xy^{n-2} + y^{n-1})$
- (vii) $x^{n} + y^{n} = (x + y) (x^{n-1} x^{n-2}y + x^{n-3}y^{2} + \dots xy^{n-2} + y^{n-1})$

when n is odd positive integer

- (i) Product of r successive integers is divisible by r!
- (ii) For $x \neq y$, $x^n y^n$ is divisible by

(a) x + y, if n is even (b) x - y, if n is even or odd

- (iii) $x^n + y^n$ is divisible by x + y, If n is odd
- (iv) For solving objective question related to natural numbers we find out the correct alternative by negative examination of this principle. If the given statement is P(n), then by putting $n = 1, 2, 3 \dots$ in P(n) we decide the correct answer. We also use the above formulae established by this principle to find the sum of n terms of a given series. For this we first express T_n as a polynomial in n and then for finding S_n , we put Σ before each term of this polynomial and then use above results of $\Sigma n, \Sigma n^2, \Sigma n^3$ etc.
- (v) If a given statement P(n) is to be proved for n = m + 1, m + 2, m + 3..... for some m ∈ N, then we are required to prove that P(m + 1) is true instead of proving P(1) is true.

Ex. Find the sum of the terms in the nth bracket of the series $(1) + (2+3+4) + (5+6+7+8+9) + \dots$

Sol. For n = 1, we have

Sum of the terms in first bracket = 1

and, $(n-1)^3 + n^3 = (1-1)^3 + 1^3 = 1$

for n = 2, we have

Sum of the terms in the second bracket = 2 + 3 + 4 = 9

and, $(n-1)^3 + n^3 = (2-1)^3 + 2^3 = 1 + 8 = 9$

Ex. By using P.M.I. prove that $10^n + 3.4^{n+2} + 5$ is divisible by 9, $n \in N$.

Sol. Given statement is true for n = 1 as 10 + 192 + 5 = 207 is divisible by 9.

Let us assume that the result is true for n = ki.e. $10^k + 3.4^{k+2} + 5 = 9\lambda, \lambda \in N$. Now for n = k + 1 $10^{k+1} + 3.4^{k+3} + 5 = 10(9\lambda - 3.4^{k+2} - 5) + 3.4^{k+3} + 5$ $= 90\lambda - 288.4^k - 45$ which is divisible by 9. so the result is true for n = k + 1so by P.M.I. the result is true for all $n \in N$.

Ex. If
$$A = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$
, then for some $n \in N$, find A^n .

Sol. We find that

$$A^{2} = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix}$$
$$A^{3} = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3k \\ 0 & 1 \end{pmatrix}$$

Similarly

So

$$A^{4} = \begin{pmatrix} 1 & 4k \\ 0 & 1 \end{pmatrix}, A^{5} = \begin{pmatrix} 1 & 5k \\ 0 & 1 \end{pmatrix} \text{ etc}$$
$$A^{n} = \begin{pmatrix} 1 & nk \\ 0 & 1 \end{pmatrix}$$

Ex. Let P(n) be the statement "7 divides $(2^{3n} - 1)$ ". What is P(n + 1)?

Sol. P(n + 1) is the statement "7 divides $(2^{3(n+1)} - 1)$ " Clearly P(n + 1) is obtained by replacing n by (n + 1) in P(n).

Ex. If ω is an imaginary cube root of unity then value of the expression $1.(2-\omega).(2-\omega^2)+2.(3-\omega).(3-\omega^2)+....+(n-1)(n-\omega)(n-\omega^2)$ is-

Sol. Sum =
$$\sum_{n=2}^{n} (n-1)(n-\omega)(n-\omega^2) = \sum_{n=1}^{n} (n-1)[n^2 - n(\omega + \omega^2) + \omega^3]$$

[\rightarrow when n = 1, sum = 0]

$$=\Sigma(n-1)(n^2+n+1)$$

$$= \Sigma(n^{3} - 1) = \Sigma n^{3} - \Sigma 1 = \frac{1}{4} n^{2} (n+1)^{2} - n^{2}$$

- Ex. If x and y are any two distinct integers, then prove by mathematical induction that $(x^n y^n)$ is divisible by (x y) for all $n \in N$.
- **Sol.** Let P(n) be the statement given by

 $P(n): (x^n - y^n)$ is divisible by (x - y)

Step-I $P(1): (x^1 - y^1)$ is divisible by (x - y)

$$x^1 - y^1 = (x - y)$$
 is divisible by $(x - y)$

 \therefore P(1) is true

Step-II Let P(m) be true, then

 $(x^m - y^m)$ is divisible by (x - y)

$$\Rightarrow (x^{m} - y^{m}) = \lambda(x - y) \text{ for some } \lambda \in Z \qquad \dots (i)$$

We shall now show that P(m + 1) is true. For this it is sufficient to show that

 $(x^{m+1} - y^{m+1})$ is divisible by (x - y).

MATHS FOR JEE MAIN & ADVANCED

	Now	$x^{m+1} - y^{m+1} = x^{m+1} - x^m y + x^m y - y^{m+1}$	
		$= x^m(x-y) + y(x^m - y^m)$	
		$= x^{m}(x-y) + y\lambda(x-y) \qquad [Using (i)]$	
		= $(x - y) (x^m + y\lambda)$ which is divisible by $(x - y)$	
	So	P(m+1) is true	
	thus	$P(m)$ is true \Rightarrow $P(m+1)$ is true	
		Hence by the principle of mathematical induction $P(n)$ is true for all $n \in N$	
	i.e.	$(x^n - y^n)$ is divisible by $(x - y)$ for all $n \in N$	
Ex.	Prove by the principle of mathematical induction that $n < 2^n$ for all $n \in N$.		
Sol.	Let P(n)	the statement given by $P(n) : n < 2^n$	
	Step-I	$P(1): 1 < 2^1$	
		$\rightarrow 1 < 2^1$	
		\therefore P(1) is true	
	Step-II	Let $P(m)$ be true, then $m < 2^m$	
		we shall now show that $P(m + 1)$ is true for which we will have to prove that $(m + 1) < 2^{m+1}$	
	Now	P(m) is true	
	⇒	$m < 2^m$	
	⇒	$2m < 2.2^{m} \implies 2m < 2^{m+1} \implies (m+m) < 2^{m+1}$	
	⇒	$m+1 \le m+m < 2^{m+1} \qquad \qquad [\rightarrow 1 \le m : : : : m+1 \le m+m]$	
	⇒	$(m+1) < 2^{m+1}$	
	⇒	P(m+1) is true	
	thus	$P(m)$ is true \Rightarrow $P(m+1)$ is true	
		So by the principle of mathematical induction $P(n)$ is true for all $n \in N$ i.e. $n < 2^n$ for all $n \in N$	

In an algebra, there are certain results that are formulated in terms of n, where n is a positive integer. Such results can be proved by specific technique, which is known as the principle of Mathematical Induction.

1. First Principle of Mathematical Induction

Let P(n) be a statement involving natural number n. To prove statement P(n) is true for all natural number, we follow following process.

- (i) Prove that P(1) is true.
- (ii) Assume P(k) is true.
- (iii) Using (i) and (ii) prove that statement is true for n = k + 1,.

i.e. P(k+1) is true.

This is first principle of Mathematical Induction.

2. Second Principle of Mathematical Induction

In second principle of Mathematical Induction following steps are used.

- (i) Prove that P(1) is true.
- (ii) Assume P(n) is true for all natural numbers such that $2 \le n \le k$.
- (iii) Using (i) and (ii) prove that P(k + 1) is true.

