

BINOMIAL

1. **BINOMIAL EXPRESSIONS**

An algebraic expression containing two terms is called a **binomial expression**. For example, 2x + 3, $x^2-x/3$, x + a etc. are

Binomial Expressions.

2. **BINOMIAL THEOREM**

The rule by which any power of a binomial can be expanded is called the **Binomial Theorem**.

3. BINOMIAL THEOREM FOR POSITIVE INTEGRAL INDEX

If x and a are two real numbers and n is a positive integer then

 $(x + a)^{n} = {}^{n}C_{0} x^{n}a^{0} + {}^{n}C_{1}x^{n-1}a + {}^{n}C_{2}x^{n-2}a^{2} + \dots$ $+ {}^{n}C_{r}x^{n-r}a^{r} + \dots + {}^{n}C_{n}x^{0}a^{n}.$

Where ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{3}$,...., ${}^{n}C_{r}$ are called binomial coefficients which can be denoted by $C_0, C_1, C_2, C_3, \dots, C_r$

General Term : In the expansion of $(x+a)^n$, $(r+1)^{th}$ term is called the general term which can be represented by T_{r+1} .

 $\mathbf{T}_{r+1} = {}^{n}\mathbf{C}_{r} \mathbf{x}^{n-r} \mathbf{a}^{r}$ $= {}^{n}C_{r}$ (first term)^{n-r} (second term)^r.

Characteristics of the expansion of (x + a)ⁿ

Observing to the expansion of $(x + a)^n$, $n \in N$, we find that-

(i) The total number of terms in the expansion = (n + 1) i.e. one more than the index n.

(ii) In every successive term of the expansion the power of x (first term) decreases by 1and the power of (second term) increases by 1. Thus in every term of the expansion, the sum of the powers of x and a is equal to n (index).

(iii) The binomial coefficients of the terms which are at equidistant from the beginning and from the end are always equal i.e.

 ${}^{n}C_{r} = {}^{n}C_{n-r}$ Thus ${}^{n}C_{0} = {}^{n}C_{n}, {}^{n}C_{1} = {}^{n}C_{n-1},$ ${}^{n}C_{2} = {}^{n}C_{n-2}$ etc. (iv) ${}^{n}C_{r-1} + {}^{n}C_{r} = {}^{n+1}C_{r}$

Some deduction of Binomial Theorem :

(i) Expansion of $(x-a)^n$. $(x-a)^{n} = {}^{n}C_{0} x^{n}a^{0} - {}^{n}C_{1}x^{n-1} a^{1} + {}^{n}C_{2}x^{n-2}a^{2} - {}^{n}C_{3}x^{n-3}a^{3} + \dots + (-1)^{r}{}^{n}C_{r}x^{n-r}a^{r} + \dots + so middle term = \left(\frac{n}{2}+1\right)^{th} term.$ $(-1)^{n} C_{n} x^{o} a^{n}$

This expansion can be obtained by putting (-a) in place of a in the expansion of $(x+a)^n$.

General term = $(r + 1)^{th}$ term

 $T_{r+1} = {}^{n}C_{r}(-1)^{r} \cdot x^{n-r} a^{r}$

(ii) By putting x = 1 and a = x in the expansion of (x + a) ", we get the following result $(1+x)^n = {}^nC_n + {}^nC_1 x + {}^nC_2 x^2 + \dots + {}^nC_r x^r + \dots +$ ${}^{n}C_{n} x^{n}$

which is the standard form of binomial expansion. General term = $(r + 1)^{th}$ term

$$\mathbf{T}_{r+1} = {}^{\mathbf{n}}\mathbf{C}_{r} \mathbf{x}^{r}$$
$$= \frac{n(n-1)(n-2)....(n-r+1)}{r!}.$$

By putting (-x) in place of x in the expansion (iii) of $(1 + x)^{n}$

 $(1-x)^{n} = {}^{n}C_{0} - {}^{n}C_{1}x + {}^{n}C_{2}x^{2} - {}^{n}C_{3}x^{3} + \dots + (-1)^{r}{}^{n}C_{r}x^{r} + \dots + {}^{n}C_{n}x^{n}.$

General term = (r + 1)th term $T_{r+1} = (-1)^r \cdot C_r \times C_r$

$$= (-1)^{r} \cdot \frac{n(n-1)(n-2)\dots(n-r+1)}{r!} \cdot x^{r}$$

4. NUMBER OF TERMS IN THE EXPANSION OF $(x + y + z)^{n}$

$$x + y + z)^n$$
 can be expanded as-

 $(x + y + z)^n = \{(x + y) + z\}^n$

$$(x + y)^{n} + {}^{n}C_{1}(x + y)^{n-1}.z + {}^{n}C_{2}(x + y)^{n-1}.z^{n}$$

 $z^{2} + \dots + {}^{n}C_{n}z^{n}.$

- = (n + 1) terms + n terms + (n-1) terms ++ 1 term
- \therefore Total number of terms = (n +1) + n + (n-1) + + 1

$$=\frac{(n+1)(n+2)}{2}$$

5. MIDDLE TERM IN THE EXPANSION OF (x + a)ⁿ

(a) If n is even, then the number of terms in the expansion i.e. (n+1) is odd, therefore, there will

be only one middle term which is $\left(\frac{n+2}{2}\right)^{th}$ term.

i.e.
$$\left(\frac{n}{2}+1\right)^{th}$$
 term.

BINOMIAL

(b) If n is odd, then the number of terms in the expansion i.e. (n + 1) is even, therefore there will be two middle terms which are

$$=\left(\frac{n+1}{2}\right)^{th}$$
 and $\left(\frac{n+3}{2}\right)^{th}$ term.

Note : (i) When there are two middle terms in the expansion then their Binomial coefficients are equal.

(ii) Binomial coefficient of middle term is the greatest Binomial coefficient.

6. TO DETERMINE A PARTICULAR TERM IN THE EXPANSION

In the expansion of $\left(x^{\alpha}\pm\frac{1}{x^{\beta}}\right)^n$, if x^m occurs in

 T_{r+1} , then r is given by

 $n \alpha - r (\alpha + \beta) = m$

 \Rightarrow r = $\frac{n\alpha - m}{\alpha + \beta}$

Thus in above expansion if constant term i.e. the term which is independent of x, occurs in T_{r+1} then r is determined by

 $n \alpha - r (\alpha + \beta) = 0$

$$\Rightarrow r = \frac{n\alpha}{\alpha + \beta}$$

7. TO FIND A TERM FROM THE END IN THE EXPANSION OF (x+a)"

It can be easily seen that in the expansion of $(x+a)^n$.

 $(r+1)^{th}$ term from end = $(n-r+1)^{th}$ term from beginning.

i.e. $T_{r+1}(E) = T_{n-r+1}(B)$ $\therefore T_r(E) = T_{n-r+2}(B)$

8. BINOMIAL COEFFICIENTS & THEIR PROPERTIES

In the expansion of $(1 + x)^n$; i.e. $(1 + x)^n = {}^nC_0 + {}^nC_1x + \dots + {}^nC_rx^r + \dots + {}^nC_nx^n$

The coefficients ${}^nC_0, \; {}^nC_1, {}^nC_n$ of various powers of x, are called binomial coefficients and they are written as

$$C_0, C_1, C_2, \dots, C_n$$

Hence

 $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_r x^r + \dots + C_n x^n \dots (1)$

Where
$$C_0 = 1$$
, $C_1 = n$, $C_2 = \frac{n(n-1)}{2!}$

$$C_r = \frac{n(n-1)....(n-r+1)}{r!}$$
, $C_n = 1$

Now, we shall obtain some important expressions involving binomial coefficients-

(a)Sum of Coefficient : putting x = 1 in (1), we get

 $C_0 + C_1 + C_2 + \dots + C_n = 2^n \dots (2)$

(b)Sum of coefficients with alternate signs : putting x = -1 in(1) We get

$$C_0 - C_1 + C_2 - C_3 + \dots = 0$$
 ...(3)

(c) Sum of coefficients of even and odd terms: from (3), we have

$$C_0 + C_2 + C_4 + \dots = C_1 + C_3 + C_5 + \dots$$
...(4)

i.e. sum of coefficients of even and odd terms are equal.

from (2) and (4)

$$\Rightarrow C_0 + C_2 + \dots = C_1 + C_3 + \dots = 2^{n-1}$$

9. APPLICATIONS OF BINOMIAL THEOREM

(a) With the help of binomial theorem, we can find out the value of sq. root, cube root and 4th root etc. of the given number upto any decimal places.

(b) To find the sum of Infinite series :

We can compare the given infinite series with the

expansion of
$$(1 + x)^n = 1 + nx + \frac{n(n-1)}{2!}$$

 x^2 + and by finding the value of x and n and putting in $(1 + x)^n$ the sum of series is determined.

SET AND RELATIONS
Ex.1 Find the first four terms of the expansion of
$$\left(ax - \frac{1}{bx^2}\right)^5$$

Ex.1 Find the first four terms of the expansion of $\left(ax - \frac{1}{bx^2}\right)^5$
Sol. $\left(ax - \frac{1}{bx^2}\right)^5$
 $= {}^5C_0(ax)^5 + 5C_1(ax)^4 \left(-\frac{1}{bx^2}\right)^4$
 $= {}^5C_0(ax)^4 \left(-\frac{1}{bx^2}\right)^4$
 $= {}^5C_0(ax)^4 \left(-\frac{1}{bx^2}\right)^4$
 $= {}^5C_0(ax)^4 \left(-\frac{1}{cx}\right)^2$
 $= {}^5C_0(ax)^4 \left(-\frac{1}{cx}\right)^2$
 $= {}^5C_0(ax)^4 \left(-\frac{1}{cx}\right)^5$
Sol. T₆ = ${}^8C_5(3x^2)^3 \left(-\frac{1}{2x}\right)^5$
 $= {}^5C_1(ax)^4 \left(-\frac{1}{cx}\right)^2$
 $= {}^5C_2(ax)^3 \left(-\frac{1}{2x}\right)^5$
Sol. A given 8C_4 , 8C_6 are in AP.
 $\Rightarrow {}^8C_4 + {}^8C_6 = 2$. 8C_5
 $= {}^8C_5(ax - 1)$, ${}^8C_5(ax - 1)$

 $\therefore a_{r} = \text{ coefficient of } (r + 1)\text{ th term}$ $= {}^{29} C_{r} \cdot {}^{329-r} \cdot {}^{7} r$ Now, $a_{r} = a_{r-1}$ $\Rightarrow {}^{29}C_{r} \cdot {}^{329-r} \cdot {}^{7}r$ $= {}^{29} C_{r-1} \cdot {}^{330-r} \cdot {}^{7}r^{-1}$ $\Rightarrow {}^{\frac{29}{29}}C_{r-1} = {}^{3}\frac{}{7}$ $\Rightarrow {}^{30-r}r = {}^{3}\frac{}{7} \Rightarrow r = 21.$

- **Ex.9** If the fourth term in the expansion of $(px + 1/x)^n$ is 5/2 then find the value of n and p
- Sol. The fourth term in expansion of

 $T_4 = {}^{n}C_3 \cdot (px)^{n-3} (1/x)^3 = 5/2.$ $\Rightarrow ({}^{n}C_3 \cdot p^{n-3}) \cdot x^{n-6} = 5/2 \cdot x^0$

Compairing the coefficient of x and constant

term $n - 6 = 0 \implies n = 6$ and ${}^{n}C_{3}$ (p) ${}^{n-3} = 5/2$

putting n = 6 in it

 $6C_3 p^3 = 5/2$

$$\Rightarrow p^{3} = 1/8$$
$$\Rightarrow p^{3} = (1/2)^{3}$$

$$\Rightarrow p = 1/2$$

Ex.10 Find the coefficient of x^4 in the expansion

of
$$(1 + x + x^2 + x^3)^n$$

Sol. Exp. = $(1 + x)^{n} (1 + x^{2})^{n}$ = $(1 + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + {}^{n}C_{3}x^{3} + {}^{n}C_{4}x^{4} + \dots + x^{n})$

$$(1 + {}^{n}C_{1}x^{2} + {}^{n}C_{2}x^{4} + ... + x^{2n})$$

 \therefore Coefficient of x^4

$$= {}^{n}C_{4} + {}^{n}C_{2} \cdot {}^{n}C_{1} + {}^{n}C_{2}$$

- **Ex.11** If x^m occurs in the expansion of $\left(x + \frac{1}{x^2}\right)^{2n}$, find the coefficient of x^m
- **Sol.** The general term in the expansion of the given expression is

$$T_{r+1} = {}^{2n}C_r x^{2n-r} \left(\frac{1}{x^2}\right)^r$$
$$= {}^{2n}C_r x^{2n-3r}$$

For the coefficient of x^m , we must have

 $2n-3r = m \implies r = \frac{2n-m}{3}$ So, coefficient of x^m

 $= \frac{2^{n}C_{2n-m}}{3} = \frac{2^{n}-m}{3} \left[\frac{4n+m}{3} \right]!$ **Ex.12** Find the sum of the rational terms in the

expansion of
$$(\sqrt{2} + 3^{1/5})^{10}$$

Sol. Here
$$T_{r+1} = {}^{10} C_r (\sqrt{2}) {}^{10-r} (3^{1/5})^r$$
,
where $r = 0, 1, 2, ..., 10$.

We observe that in general term T_{r+1} powers of 2 and 3 are $\frac{1}{2}(10-r)$ and $\frac{1}{5}$ r respectively and $0 \le r \le 10$. So both these powers will be integers together only when r = 0 or 10 \therefore sum of required terms

> = $T_1 + T_{11}$ = ¹⁰ $C_0(\sqrt{2})^{10} + {}^{10} C_{10} (3^{1/5})^{10}$ = 32 + 9 = 41

EXERCISE			
Using Q.1	binomial theorem, expand each of the following: $(3x + 2y)^4$ Q.2 $(2x - 3y)^4$	Q.19	If the coefficients of 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(1 + x)^{2n}$ are in AP, show that $2n^2 - 9n + 7 = 0$.
Q.3	$\left(x+\frac{1}{y}\right)^{11}$ Q.4 $(\sqrt{x}+\sqrt{y})^{10}$	Q.20	In the expansion of $(1 + x)^n$, the three successive coefficients are 462, 330 and 165 respectively. Find the values of n and r.
Q.5 Q.6 Q.7	Evaluate : $(\sqrt{2} + 1)^6 + (\sqrt{2} + 1)^6$ Evaluate : $(2 + \sqrt{3})^7 + (2 - \sqrt{3})^7$ Evaluate : $(1001)^5$	Q.21 Q.22	of $(x + y)^n$ are 1, 56 and 1372 respectively. Find the values of x and y. The coefficients of three consecutive terms in
Q.8 (ii	(i) Find the 7 th term in the expansion of $\left(\frac{4x}{5} + \frac{5}{2x}\right)^8$.) Find the 10 th term in the expansion of $\left(\frac{a}{b} - \frac{2b}{a^2}\right)^{12}$	Q.23	the expansion of $(1 + x)^n$ are in the ratio 1 : 7 : 42. Find n. In the binomial expansion of $(a + b)^n$, the coefficients of 4 th and 13 th terms are equal to each other. Find n.
Q.9 \	Find the 16 th term in the expansion of $(\sqrt{x} - \sqrt{y})^{17}$ Write the general term in the expansion of (x ² -y) ⁶ .	Q.24	In the expansion of $(1 + x)^{m+n}$, where m and n are positive integers , prove that the coefficients of x^m and x^n are equal.
Q.10 Q.11	Find the 5 th term from the end in the expansion of $\left(x - \frac{1}{x}\right)^{12}$. Find the coefficients of	1.	ANSWER KEY 81 x ⁴ + 216 x ³ y + 216 x ² y ² + 96xy ³ + 16y ⁴ 16x ⁴ - 96x ³ y + 216x ² y ³ - 216xy ² + 81y ⁴
v	(i) x^2 in the expansion of $\left(x^2 + \frac{1}{x}\right)^{11}$;		$\left[x^{11} + \frac{11x^{10}}{y} + \frac{55x^2}{y^2} + \frac{165x^8}{y^3} + \frac{330x^7}{y^4}\right]$
Q.12	(ii) x ² in the expansion of $\left(3x - \frac{1}{x}\right)^{\circ}$; Find the middle term in the expansion of; (i) $(3 + x)^{6}$ (ii) $\left(1 - \frac{x^{2}}{2}\right)^{14}$		$\frac{462x^{6}}{y^{5}} + \frac{462x^{5}}{y^{6}} + \frac{330x^{4}}{y^{7}} + \frac{165x^{3}}{y^{8}} + \frac{55x^{2}}{y^{9}} + \frac{11x}{y^{10}} + \frac{1}{y^{11}} \right]$ x ⁵ +10x ^{9/2} y ^{1/2} + 45x ⁴ y + 120x ^{7/2} y ^{3/2} + 210x ³ y ²
Q.13	(i) $(3 + x)^6$ (ii) $\left[1 - \frac{x}{2}\right]$ Find the two middle terms in the expansion of (i) $(x^2 + a^2)^5$ (ii) $\left(3x - \frac{2}{x^2}\right)^{15}$	5.	$+ 252x^{5/2}y^{5/2} + 210x^2y^3 + 120x^2y^{7/2} + 45xy^4 + 10x^{1/2}y^{9/2} + y^5$ 198 6. 9884 7. 1005010010005001
Q.14	Show that the term containing x ³ does not exist in the expansion of $\left(3x - \frac{1}{2x}\right)^8$.		(i) $\frac{4375}{x^4}$ (ii) $\frac{(-366080)b^5}{a^{14}}$ (iii) -136 xy ^{15/2}
Q.15	Find the term independent of x in the expansion of; (i) $\left(x + \frac{1}{x}\right)^{10}$ (ii) $\left(\sqrt{x} + \frac{1}{3x^2}\right)^{10}$		$(-1)^{r} {}^{6}C_{r} x^{12-2r} y^{r}$ 10. 495x ⁴ 11. (i) 462 (ii) 1215 (i) 540 x ³ (ii) $\frac{-429}{16} x^{14}$
Q.16	Show that the ratio of the coefficient of x ¹⁰ in $(1 - x^2)^{10}$ and the term independent of x in $\left(x - \frac{2}{x}\right)^{10}$ is (1 : 32).	13.	(i) $10x^6a^4$ (ii) $\frac{-6435 \times 3^8 \times 2^7}{x^6}$ and $\frac{6435 \times 3^7 \times 2^8}{x^9}$
Q.17	Simplify the following expressions: $\left(x + \frac{1}{x}\right)^{6} - \left(x - \frac{1}{x}\right)^{6}$		(i) 252 (ii) 5 17. $12\left(x^4 + \frac{1}{x^4} + \frac{10}{3}\right)$ 18. -6
Q.18	Find the coefficient of x^5 in the expansion of $(1 + x)^3 (1 - x)^6$.		n = 11 and r = 7 21. x = 1, y = 7 55 23. 15