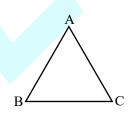
TRIANGLES AND ITS PROPERTIES

CONTENTS

- Triangle
- Interior and Exterior of a Triangle
- Types of Triangle
- Angle sum property of a Triangle
- Median & Altitude of a Triangle
- Exterior Angle of a Triangle
- Triangle Inequality
- Pythagoras Theorem

TRIANGLE

A geometrical figure formed by joining three noncollinear points by three line segments is called a triangle.



The triangle ABC has :

Sides : \overline{AB} , \overline{BC} , \overline{CA}

Vertices : A, B and C.

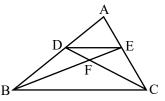
Angles : \angle BAC or \angle CAB, \angle ABC or \angle CBA and \angle ACB or \angle BCA.

A triangle is denoted by the symbol ' Δ '.

The three sides and three angles taken together are called six elements or six parts of a triangle.

♦ EXAMPLES ♦

- **Ex.1** Do three collinear points A, B and C form a triangle?
- **Sol.** No, three collinear points form a line.
- **Ex.2** For the triangle Δ LMN, name
 - (a) the side opposite to $\angle M$.
 - (b) the angle opposite to side LM.
 - (c) the vertex opposite to side NL.
 - (d) the side opposite to vertex N.
- **Sol.** (a) The side opposite to $\angle M$ is LN.
 - (b) The angle opposite to side LM is $\angle N$.
 - (c) The vertex opposite to side NL is M.
 - (d) The side opposite to vertex N is LM.
- **Ex.3** How many different triangles are in figure ? Name each of them.



Sol. $\triangle ABC, \triangle ADE, \triangle ABE, \triangle ADC, \triangle BFC, \triangle BFD, \\ \triangle BDE, \triangle CEF, \triangle CED, \triangle DEF, \triangle BCD, \triangle BEC.$

So, there are 12 different triangles in the given figure.

Power by: VISIONet Info Solution Pvt. Ltd		
WebSite : www.edubull.com	Mob no. : +91-9350679141	55

A triangle in which all

7 cm

3. Scalene triangle :

8 cm

sides are unequal.

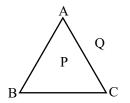
6 cn

B

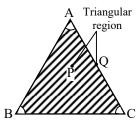
INTERIOR AND EXTERIOR OF A TRIANGLE

Interior of a triangle is the region of the plane enclosed by ΔABC .

Here, point P is in the interior of $\triangle ABC$.



Exterior of a triangle is the region of the plane which lies beyond or not enclosed by the boundary of $\triangle ABC$. In figure, Q is the point which is in the exterior of the $\triangle ABC$.

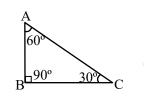


Interior of $\triangle ABC$ (as shown by the shaded region P in figure) together with the points on the boundary of $\triangle ABC$ (as shown by point Q) is known as the triangular region ABC.

Based on angles	Based on sides	
1. Acute angled triangle :	1. Equilateral triangle :	
A triangle whose all angles are acute i.e., less than 90°.	A triangle with all sides equal to one another.	
A 70° B 60° 50° C	4 cm $4 cm$ $4 cm$ C	
2. Obtuse angled triangle : A triangle whose one angle is obtuse i.e., greater than 90°.	2. Isosceles triangle : A triangle with any two sides equal to each other.	
$D \xrightarrow{100^{\circ}} 30^{\circ} C$	5 cm 5 cm	
A triangle cannot have more than one obtuse angle.	$B \xrightarrow{6 \text{ cm}} C$	

3. Right angled triangle :

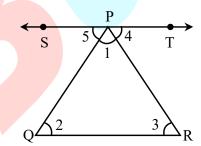
A triangle whose one angle is of measure 90° also the other two angles are acute angles whose sum is 90° .



The side of opposite to the right angle is called the hypotenuse, and other two side are called legs of the right triangle.

ANGLE SUM PROPERTY OF A TRIANGLE

The sum of the angles of a triangle is 180° or two right angles.



Given : A triangle PQR.

To prove : $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$

i.e., sum of all angles of a triangle is 180°.

Construction : Through P, draw a line ST parallel to QR.

Proof : As ST \parallel QR and transversal PQ cuts them.

 $\therefore \ \angle 2 = \angle 5$ (alternate angles) ...(1)

Again ST || QR and transversal PR cuts them.

Adding (1) and (2), we get

$$\angle 2 + \angle 3 = \angle 5 + \angle 4 \qquad \dots (3)$$

Now adding $\angle 1$ on both sides to equation (3), we get

$$\angle 1 + \angle 2 + \angle 3 = \angle 1 + \angle 5 + \angle 4$$

$$\Rightarrow \angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$

(as $\angle 1 + \angle 5 + \angle 4 = 180^{\circ}$)

56

Note :

- (i). Each angle of an equilateral triangle measures 60°
- (ii) The angles opposite to equal sides of an isosceles triangle are equal.
- (iii) A scalene triangle has all angles unequal.
- (iv) A triangle cannot have more than one right angle
- (v) A triangle cannot have more than one obtuse angle.
- (vi) In a right triangle, the sum of two acute angles is 90°.
- (vii) The sum of the lengths of the sides of a triangle is called perimeter of triangle.

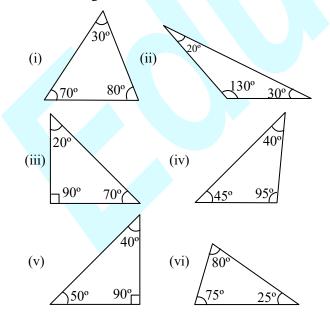
♦ EXAMPLES ♦

Ex.4 Classify the triangles as Scalene, isosceles or equilateral, if their sides are :

(i) 2 cm, 3 cm, 2 cm (ii) 2 cm, 2 cm, 2 cm

(iii) 3 cm, 6 cm, 4 cm

- Sol. (i) As two sides are equal, so this is an isosceles triangle.
 - (ii) As all sides are equal, so this is an equilateral triangle.
 - (iii) As all sides are unequal, so this is a scalene triangle.
- **Ex. 5** Classify the following triangles according to their angles :



- **Sol.** (i) As all the angles of this triangle are acute, so this is an acute triangle.
 - (ii) As one of the angles (130°) is obtuse, so this is an obtuse triangle.
 - (iii) As one of the angles is a right angle (90°), so this is a right triangle.
 - (iv) As one of the angles is obtuse (95°), so this is an obtuse triangle.
 - (v) As one of the angles is a right angle (90°), so this is a right triangle.
 - (vi) As all the angles are acute, so this is an acute triangle.
- **Ex. 6** Classify the triangles as acute, obtuse or right, whose angles are :

(i) 50°, 40°, 90° (ii) 120°, 30°, 30°

(iii) 70°, 60°, 50°

- **Sol.** (i) As one of the angles is a right angle, so this is a right triangle.
 - (ii) As one of the angles is an obtuse angle, so this is an obtuse triangle.
 - (iii) As all the angles are acute, so this is an acute triangle.
- **Ex.7** Classify the triangles according to their given sides as scalene, isosceles or equilateral :

(a) 3.5 cm, 4 cm, 4 cm (b) 6 cm, 7 cm, 9 cm

- (c) 6.2 cm, 6.2 cm, 6.2 cm
- (a) As two sides are equal so it is an isosceles triangle.
 - (b) As all the sides are different so it is an scalene triangle.
 - (c) As all the sides are equal so it is equilateral triangle.
- **Ex.8** Classify the triangles as acute, obtuse or right if angles are :
 - (a) 60° , 30° , 90°

(b) 120°, 40°, 20°

- $(c) 60^{\circ}, 60^{\circ}, 60^{\circ}$
- Sol. (a) As one angle of 90° so, it is a right triangle.
 - (b) As one angle (120°) is greater than 90° i.e., obtuse, so it is an obtuse triangle.
 - (c) As each angle is of 60°, so it is an equilateral triangle.

Power by: VISIONet Info Solution Pvt. Ltd		
WebSite : www.edubull.com	Mob no. : +91-9350679141	57

Sol.

- **Ex.9** Two angles of a triangle are of measures 70° and 30°. Find the measure of the third angle.
- Sol. Let PQR be a triangle such that $\angle P = 70^{\circ}$, $\angle Q = 30^{\circ}$. Then, we have to find the measure of third angle R.

As $\angle P + \angle Q + \angle R = 180^{\circ}$

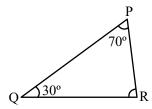
(angle sum property of triangle)

$$70^{\circ} + 30^{\circ} + \angle R = 180^{\circ}$$

$$100^{\circ} + \angle R = 180^{\circ}$$

$$\angle R = 180^{\circ} - 100^{\circ}$$

$$\Rightarrow \angle R = 80^{\circ}$$



- **Ex.10** One of the angles of a triangle has measure 70° and the other two angles are equal. Find these two angles.
- **Sol.** Let PQR be a triangle such that :

$$\angle P = 70^{\circ} \text{ and } \angle Q = \angle R = x \text{ (let)}$$

As
$$\angle P + \angle Q + \angle R = 180^{\circ}$$

(angle sum property of Δ)

$$70^{\circ} + x + x = 180^{\circ}$$

$$2x = 180^{\circ} - 70^{\circ}$$

$$2x = 110^{\circ}$$

$$x = \frac{110^{\circ}}{2}$$

$$x = 55^{\circ}$$

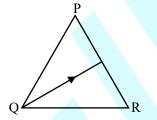
$$P$$

$$70^{\circ}$$

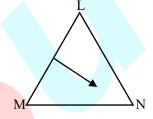
$$R$$

So, measure of each of remaining two angles is 55°.

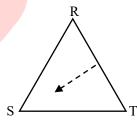
- Ex.11 Write the
 - (i) side opposite to the vertex Q of Δ PQR
 - (ii) angle opposite to the side LM of Δ LMN
 - (iii) vertex opposite to the side RT of Δ RST.
- **Sol.** (i) The side opposite to vertex Q is PR.



(ii) Angle opposite to side LM is $\angle N$.



(iii) Vertex opposite to the side RT of Δ RST is S.



Ex.12 In each of the following, the measures of three angles are given. State in which case the angles can possibly be those of a triangle :

(i) 53°, 73°, 83°	(ii) 59°, 12°, 109°
(iii) 45°, 45°, 90°	(iv) 30°, 120°, 30°

Sol. (i) $53^{\circ} + 73^{\circ} + 83^{\circ} = 209^{\circ} > 180^{\circ}$

Therefore, not possible

(ii) $59^{\circ} + 12^{\circ} + 109^{\circ} = 180^{\circ}$

Therefore, possible

(iii) $45^\circ + 45^\circ + 90^\circ = 180^\circ$

Therefore, possible

(iv) $30^\circ + 120^\circ + 30^\circ = 180^\circ$

Therefore, possible

	Power by: VISIONet Info Solution Pvt. Ltd		
-	WebSite : www.edubull.com	Mob no. : +91-9350679141	5

- **Ex.13** The three angles of a triangle are equal to one another. What is the measure of each angle ?
- Sol. Let each angle be of measure x in degrees. Then, by angle sum property

 $x + x + x = 180^{\circ}$

 $\Rightarrow 3x = 180^{\circ}$

$$\Rightarrow x = 60^{\circ}$$

So, the measure of each angle is 60°.

- **Ex.14** The angles of a triangle are in the ratio 2 : 3 : 4. Find the angles.
- Sol. Given ratio between the angles of a triangle = 2:3:4.

Let the angles be 2x, 3x and 4x

Since the sum of angles of a Δ is 180°

$$\therefore 2x + 3x + 4x = 180^\circ$$

$$\Rightarrow 9x = 180^{\circ}$$

 $\Rightarrow x = \frac{180^{\circ}}{9} = 20^{\circ}$

Hence the angles are 2x, 3x and 4x

i.e.,
$$2 \times 20^{\circ}$$
, $3 \times 20^{\circ}$, $4 \times 20^{\circ}$

 \Rightarrow 40°, 60° and 80°.

- **Ex.15** In $\triangle ABC$, if $\angle A = 2 \angle B$ and $\angle C = 3 \angle B$, then find all the angles of $\triangle ABC$.
- Sol. In $\triangle ABC$

 $\angle A + \angle B + \angle C = 180^{\circ}$

- $\Rightarrow 2\angle B + \angle B + 3\angle B = 180^{\circ}$
- $\Rightarrow 6\angle B = 180^{\circ}$

$$\Rightarrow \angle B = \frac{180^\circ}{6} = 30^\circ$$

 $\Rightarrow \angle B = 30^{\circ}$

Now, $\angle A = 2 \angle B = 2 \times 30^\circ = 60^\circ$ and

 $\angle C = 3 \angle B = 3 \times 30^\circ = 90^\circ$

Hence, $\angle A = 60^\circ$, $\angle B = 30^\circ$ and $\angle C = 90^\circ$.

Ex.16 In the Fig., $CD \perp AB$. Also, $\angle A = 45^{\circ}$. Find $\angle ADC$, $\angle CDB$, $\angle ABC$, $\angle DCB$ and $\angle DCA$.

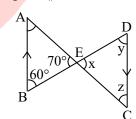
D

B

A Since $CD \perp AB$ $\therefore \angle ADC = \angle CDB = 90^{\circ}$ Now in $\triangle ADC$, we have $\angle ADC + \angle DAC + \angle DCA = 180^{\circ}$ (angle sum property of triangle) $90^{\circ} + 45^{\circ} + z = 180^{\circ}$ $\Rightarrow z = 180^{\circ} - 135^{\circ} = 45^{\circ}$ $\therefore \angle y = 90^{\circ} - 45^{\circ} \Rightarrow \angle y = 45^{\circ}$ In $\triangle ACB$ $\angle A + 90^{\circ} + \angle x = 180^{\circ} 45^{\circ} + 90^{\circ} + \angle x = 180^{\circ}$ $135^{\circ} + \angle x = 180^{\circ} \angle x = 180^{\circ} - 135^{\circ} = 45^{\circ}$ Hence, $x = 45^{\circ}$, $y = 45^{\circ}$ and $z = 45^{\circ}$.

Ex.17 In the fig. $AB \parallel DC$. Find the values of x, y and z.

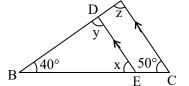
Sol.



 $\angle DEC = \angle AEB$ [vertically opposite angles] $\Rightarrow x = 70^{\circ} \text{ and } \angle ABE = \angle EDC$ [$\because AB \parallel DC, \therefore$ alternate angles are equal] $\Rightarrow y = 60^{\circ}$ Now in $\triangle DEC$, we have $x + y + z = 180^{\circ}$ [sum of interior angles of a \triangle is 180°] $\Rightarrow 70^{\circ} + 60^{\circ} + z = 180^{\circ}$ $\Rightarrow z = 180^{\circ} - 30^{\circ} \Rightarrow z = 50^{\circ}$ Hence, $x = 70^{\circ}$, $y = 60^{\circ}$ and $z = 50^{\circ}$ respectively.

Power by: VISIONet Info Solution Pvt. Ltd		
WebSite : www.edubull.com	Mob no. : +91-9350679141	59

Ex.18 In the Fig., DE || AC. If $\angle B = 40^{\circ}$ and $\angle C = 50^{\circ}$, then find x, y and z.



In ∆ABC,

 $\angle A + \angle B + \angle C = 180^{\circ}$

[In a Δ sum of all interior angles is 180°]

 \Rightarrow z + 40° + 50° = 180°

$$\Rightarrow z = 90^{\circ}$$

Now in \triangle BDE, we have

$$y = z = 90^{\circ}$$

[:: AC || DE :: Corresponding angles are equal]

and $x = \angle ACB = 50^{\circ}$

Hence, $x = 50^\circ$, $y = 90^\circ$ and $z = 90^\circ$.

Ex.19 One angle of a \triangle ABC is 50° and the other two angles are of same measure as in Fig. Find the measure of each angle.

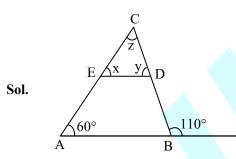
Sol.

Let $\angle A = 50^\circ$ and $\angle B = \angle C = x$

We know that in a Δ , sum of angles is 180°.

$$\therefore \angle A + \angle B + \angle C = 180^{\circ}$$
$$\Rightarrow 50^{\circ} + x + x = 180^{\circ}$$
$$\Rightarrow 2x = 180^{\circ} - 50^{\circ} = 130^{\circ}$$
$$\Rightarrow x = \frac{130^{\circ}}{2} = 65^{\circ}$$

Hence, the measure of equal angles is 65° each.



Since DE || AB, therefore,

 $\angle CED = \angle CAB$

 $\Rightarrow x = 60^{\circ}$

..... (i)

and $\angle CDE = \angle DBA$ (ii)

[Corresponding angles]

ŕ

[Corresponding angles]

But $\angle DBA + \angle DBF = 180^{\circ}$ [linear pair]

 $\Rightarrow \angle \text{DBA} + 110^\circ = 180^\circ$

 $\Rightarrow \angle \text{DBA} = 180^\circ - 110^\circ = 70^\circ$

Substituting $\angle DBA = 70^{\circ}$ in (ii), we get

$$\angle CDE = 70^{\circ}$$

 \Rightarrow y = 70°

Now in $\triangle DBE$, we have

$$\mathbf{x} + \mathbf{y} + \mathbf{z} = 180^{\circ}$$

[sum of the interior angles of a triangle is 180°]

$$\Rightarrow 60^{\circ} + 70^{\circ} + z = 180^{\circ}$$

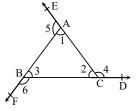
 $\Rightarrow 130^{\circ} + z = 180^{\circ}$

 \Rightarrow z = 180° - 130° = 50°

Hence, $x = 60^\circ$, $y = 70^\circ$ and $z = 50^\circ$ respectively.

Power by: VISIONet Info Solution Pvt. Ltd		
		2.0
WebSite : www.edubull.com	Mob no. : +91-9350679141	60

- **Ex.21** Show that sum of exterior angles of a triangle is 360° .
- **Sol.** Let the triangle is ABC as shown in Fig.



Interior angles are marked with numbers 1, 2 and 3 while exterior angles are marked with 4, 5 and 6.

Since $\angle 2 + \angle 4 = 180^{\circ}$ [Linear pair](i)

 $\angle 3 + \angle 6 = 180^{\circ}$ [Linear pair](ii)

 $\angle 5 + \angle 1 = 180^{\circ}$ [Linear pair] (iii)

Adding (i), (ii) and (iii) on both the sides, we get

$$\angle 2 + \angle 4 + \angle 3 + \angle 6 + \angle 5 + \angle 1 = 540^{\circ}$$

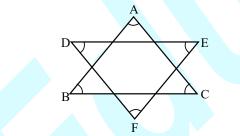
$$\Rightarrow \angle 4 + \angle 5 + \angle 6 + (\angle 1 + \angle 2 + \angle 3) = 540^{\circ}$$

 $\Rightarrow \angle 4 + \angle 5 + \angle 6 + 180^\circ = 540^\circ$

[:: $\angle 1$, $\angle 2$ and $\angle 3$ are the interior angles of the $\triangle ABC$ (:: sum will be 180°)]

$$\Rightarrow \angle 4 + \angle 5 + \angle 6 = 540^\circ - 180^\circ = 360^\circ.$$

Ex.22 Observe the Fig. and find $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F$.



We know that sum of interior angles of a triangle is 180°.

 \therefore In \triangle ABC, we have

Sol.

$$\angle \mathbf{A} + \angle \mathbf{B} + \angle \mathbf{C} = 180^{\circ} \qquad \dots \dots (i)$$

Similarly, in ΔDEF , we have

$$\angle D + \angle E + \angle F = 180^{\circ}$$
(ii)

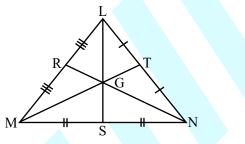
Adding (i) and (ii), we have

$$\angle A + \angle B + \angle C + \angle D + \angle E + \angle F = 360^{\circ}.$$

> MEDIAN OF A TRIANGLE

A line segment that joins a vertex of a triangle to the mid-point of the opposite side is called a median of the triangle.

For example, consider Δ LMN. Let S be the midpoint of MN, then LS is the line segment joining vertex L to the mid point of its opposite side.



The line segment LS is said to be the median of ΔLMN .

Similarly, RN and MT are also medians of Δ LMN.

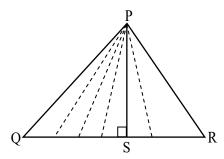
Note :

- (i) A triangle has three medians.
- (ii) All the three medians meet at one point G (called centroid of the triangle) i.e., all medians of any triangle are concurrent.
- (iii) The centroid of the triangle always lies inside of triangle.
- (iv) The centroid of a triangle divides each one of the medians in the ratio 2 : 1.
- (v) The medians of an equilateral triangle are equal in length.

> ALTITUDE OF A TRIANGLE

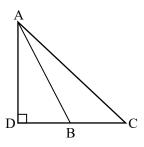
An altitude of a triangle is the line segment drawn from a vertex of a triangle, perpendicular to the line containing the opposite side.

(i) PS is an altitude on side QR in figure.

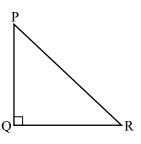


Power by: VISIONet Info Solution Pvt. Ltd	
WebSite : www.edubull.com	Mob no. : +9

(ii) AD is an altitude, with D the foot of perpendicular lying on BC in figure.

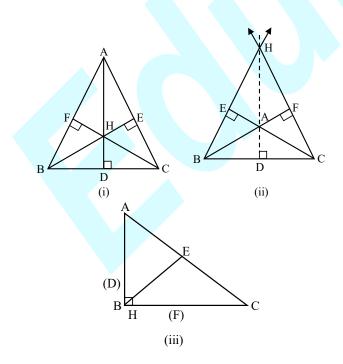


(iii) The side PQ, itself is an altitude to base QR of right angled $\triangle PQR$ in figure.



Note :

- (i) A triangle has three altitudes.
- (ii) All the three altitudes meet at a point H (called orthocentre of triangle) i.e., all altitudes of any triangle are concurrent.
- (iii) Orthocentre of the triangle may lie inside the triangle [Figure (i)], outside the triangle [Figure (ii)] and on the triangle [Figure (iii)].



۲ Orthocentre

The point of concurrence of the altitudes of a triangle is called the orthocentre of the triangle.

Notes :

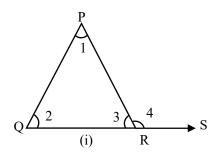
- 1. Since the altitudes of a triangle are concurrent, therefore to locate the orthocentre of a triangle, it is sufficient to draw its two altitudes.
- Although altitude of a triangle is a line segment, but 2. in the statement of their concurrence property, the term altitude means a line containing the altitude (line segment).

Properties of Altitudes	Properties of Orthocentre	
1. The altitudes of an equilateral triangle are equal.	1. The orthocentre of an acute-angled triangle lies in the interior of the triangle.	
2. The altitude bisects the base of an equilateral triangle.	2. The orthocentre of a right-angled triangle is the vertex containing the right angle.	
3. The altitudes drawn on equal sides of an isosceles triangle are equal.	3. The orthocentre of an obtuse-angled triangle lies in the exterior of the triangle.	

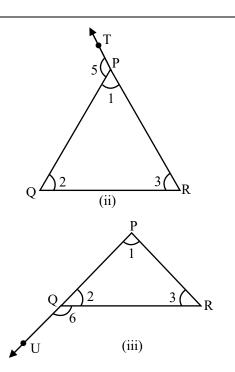
EXTERIOR ANGLE OF A TRIANGLE

If a side of a triangle is produced, the exterior angle so formed is equal to the sum of two interior opposite angles.

Let $\triangle PQR$ be a triangle such that its side QR is produced to form ray QS. Then $\angle PRS(\angle 4)$ is the exterior angle of $\triangle PQR$ at R in [Figure (i)] and angle $\angle 1$ and $\angle 2$ are its two interior opposite angles i.e., $\angle 4 = \angle 1 + \angle 2$.



Power by: VISIONet Info Solution Pvt. Ltd		
WebSite : www.edubull.com	Mob no. : +91-9350679141	



In Figure (ii), $\angle 5$ is exterior angle at point P and $\angle 2$ and $\angle 3$ are its two interior opposite angle i.e., $\angle 5 = \angle 2 + \angle 3$.

In Figure (iii), $\angle 6$ is the exterior angle at point Q and $\angle 1$ and $\angle 3$ are its two interior opposite angle i.e., $\angle 6 = \angle 1 + \angle 3$

Note :

- (i) In a triangle an exterior angle is greater than each of the interior opposite angles.
- (ii) An exterior angle and the interior adjacent angle form a linear pair.
- (iii) An exterior angle of a triangle is equal to the sum of its interior opposite angles.

Therefore, we conclude that in an equilateral triangle, altitudes and medians are the same.

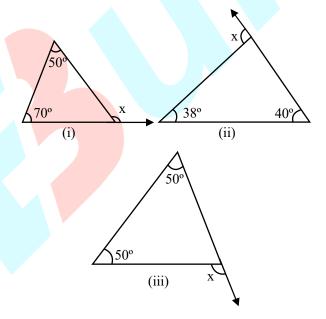
♦ EXAMPLES ♦

- Ex.23 How many altitudes can a triangle have ?
- Sol. A triangle can have three altitudes.
- **Ex.24** Fill in the blanks :
 - (i) A triangle has _____medians.
 - (ii) The medians of a triangle are

(iii) The point where all the medians meet is said to be the _____ of the triangle.

Sol. (i) three (ii) concurrent (iii) centroid.

Ex.25 In $\triangle PQR$, D is the mid point of QR. (i) PM is ______ (ii) PD is ______ (iii) Is QM = MR ? Sol. Q Q M DR



Sol. (i) $\angle x = 50^{\circ} + 70^{\circ}$

(: exterior angle is equal to sum of its opposite interior angles)

So, $\angle x = 120^{\circ}$

(ii) $\angle x = 38^{\circ} + 40^{\circ}$

(:: exterior angle is equal to sum of its opposite interior angles)

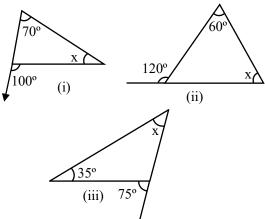
So, $\angle x = 78^{\circ}$

(iii) $\angle x = 50^{\circ} + 50^{\circ}$

 $(\because$ exterior angle is equal to sum of its opposite interior angles)

So, $\angle x = 100^{\circ}$.

Ex.27 Find the value of unknown interior angle x in the following figures :



Sol. (i) $100^{\circ} = 70^{\circ} + x$

> (:: exterior angle is equal to sum of its opposite interior angles)

$$100^{\circ} - 70^{\circ} = x$$

 $30^{\circ} = x$
So, $x = 30$

(ii) $120^\circ = 60^\circ + x$

(:: exterior angle is equal to sum of its opposite interior angles)

$$120^{\circ} - 60^{\circ} = x$$

$$60^{\circ} = x$$

So,
$$x = 60^{\circ}$$

(iii)
$$75^{\circ} = 35^{\circ} + x$$

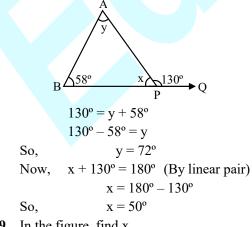
 $75^{\circ} - 35^{\circ} = x$
 $40^{\circ} = x$
So, $x = 40^{\circ}$

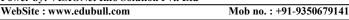
$$\mathbf{x} = 40$$

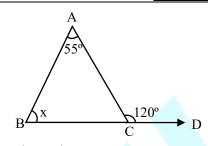
In the given figure find the values of x and y. Ex.28

Sol. $\angle APQ = \angle BAP + \angle ABP$

(exterior angle property of Δ)





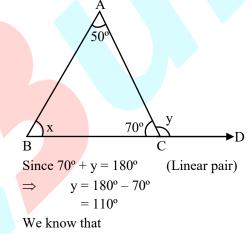


Sol. We know that exterior angle of the triangle = sum of its two interior opposite angles

$$\therefore \qquad 55^{\circ} + x = 120^{\circ}$$

 $x = 120^{\circ} - 55^{\circ} = 65^{\circ}$ \Rightarrow

In figure, find the values of x and y using Ex.30 exterior angle property.



exterior angle of the triangle = sum of its two interior opposite angles

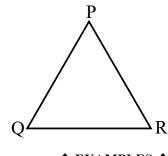
$$\Rightarrow \qquad y = x + 50^{\circ}$$
$$\Rightarrow \qquad 110^{\circ} = x + 50^{\circ}$$

 $x = 60^{\circ}$ \Rightarrow

Sol.

TRIANGLE INEQUALITY

The sum of any two sides of a triangle is greater than the third side. PQ + QR > PR or PR + QR > PQor PQ + PR > QR



64

Ex.31 Is it possible to have triangle with the following sides ?(i) 2 cm, 3 cm, 5 cm

- (ii) 3 cm, 6 cm, 7 cm
- (iii) 6 cm, 3 cm, 2 cm
- Sol. (i) No

As $2 + 3 \neq 5$

(as the sum of two sides (2 cm, 3 cm) is 5 cm which is not greater than the third side)

(ii) 3 cm, 6 cm, 7 cm

As 3 + 6 = 9 > 76 + 7 = 13 > 37 + 3 = 10 > 6

So, these are the possible sides of the triangle.

(iii) 6 cm, 3 cm, 2 cm

As
$$6+3=9>2$$

 $3+2=5 \Rightarrow 6$

$$6 + 2 = 8 > 3$$

As $3+2=5 \Rightarrow 6$

So, these are not the possible sides of triangle.

Ex.32 Take any point O in the interior of triangle PQR. Is

(i) OP + OQ > PQ ?
(ii) OQ + OR > QR ?
(iii) OR + OP > RP ?

Sol.

(:: in $\triangle POQ$ the sum of two sides is

- greater than the third side.)
- (ii) OQ + OR > QR is true.

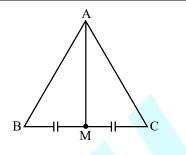
(:: in $\triangle ROQ$ the sum of two sides is greater than the third side.)

(iii) OR + OP > RP is true.

(:: in \triangle POR the sum of two sides is greater than the third side)

Ex.33 AM is a median of triangle ABC.

Is AB + BC + CA > 2AM?



Sol. In $\triangle ABM$,

AB + BM > AM ...(1)

(:: in triangle the sum of any two sides is greater than the third side)

Also in ∆AMC

AC + MC > AM ...(2)

Adding (1) and (2), we get

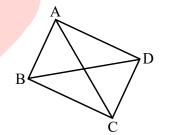
$$AB + BM + AC + MC > AM + AM$$

$$\Rightarrow$$
 AB + AC + (BM + MC) > 2 AM

$$\Rightarrow$$
 AB + AC + BC > 2 AM (:: BM + MC = BC)

Ex.34 ABCD is a quadrilateral.

Is
$$AB + BC + CD + DA > AC + BD$$
?



Sol. In $\triangle ABC$

AB + BC > AC ...(1)

(:: sum of two sides is greater than the third side) Now, in $\triangle ADC$

$$AD + DC > AC$$
 ...(2)

(:: sum of two sides is greater than the third side)

In $\triangle ABD$, $AB + AD > BD \dots (3)$

In
$$\triangle BCD$$
, $BC + CD > BD \dots (4)$

Adding (1), (2), (3) and (4), we get

2(AB + BC + CD + DA) > 2(AC + BD)

$$\Rightarrow$$
 AB + BC + CD + DA > AC + BD.

- **Ex.35** The lengths of two sides of a triangle are 6 cm and 10 cm. Between which two numbers can length of third side fall ?
- **Sol.** We know that the sum of two sides of a triangle is always greater than the third side.

Power by: VISIONet Info Solution Pvt. Ltd WebSite : www.edubull.com

Mob no. : +91-9350679141

 \therefore The third side has to be less than the sum of the two sides.

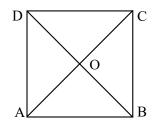
The third side is thus less than 6 + 10 = 16 cm. The side cannot be less than the difference of the two sides. Thus the side has to be more than 10 - 6 = 4 cm.

The length of third side could be any length greater than 4 cm and less than 16 cm.

Ex.36 ABCD is a quadrilateral.

Is AB + BC + CD + DA < 2 (AC + BD)?

Sol. Let ABCD be a quadrilateral in which diagonals intersect at point O.



In ∆OAB,

OA + OB > AB

(as the sum of any two sides is greater than the third side)

...(1)

Similarly, in $\triangle OBC$,

OB + OC > BC ...(2)

(as the sum of any two sides is greater than the third side)

In
$$\triangle DOC$$
, $OC + OD > DC$...(3)

In
$$\triangle AOD$$
, $OA + OD > AD \dots (4)$

Adding (1), (2), (3) and (4), we get

$$2(OA + OB + OC + OD) > AB + BC + DC + AD$$

 $\Rightarrow 2(OA + OC) + 2(OB + OD)$

$$>$$
 AB + BC + DC + AC

$$\Rightarrow 2(AC + BD) > AB + BC + DC + AD$$

[
$$: OA + OC = AC \text{ and } OB + OD = BD$$
]

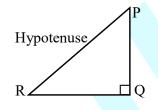
or AB + BC + CD + DA < 2(AC + BD)

Rule for angles and sides of triangle :

- (i) The side opposite to the measure of the greatest angle is the greatest and vice-versa.
- (ii) The side opposite to the measure of the smallest angle is the smallest and vice-versa.

> PYTHAGORAS THEOREM

In a right triangle, the square of the hypotenuse (The side opposite to right angle) is equal to the sum of the squares of its remaining two sides.



In
$$\triangle PQR$$
, $\angle Q = 90^{\circ}$, we have

$$PR^2 = PQ^2 + RQ^2$$

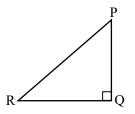
Note :

- (i) In a right triangle, the hypotenuse opposite to right angle is the longest side.
- (ii) Of all the line segments that can be drawn to a given line from a point outside it the perpendicular line segment is the shortest.
- (iii) The two sides of a right triangle other than the hypotenuse are called its legs.
- (iv) Three positive integers a, b, c in the same order are said to form a **Pythagoras triplet**, if $c^2 = a^2 + b^2$, for example, (3, 4, 5), (8, 15, 12) are Pythagoras triplets as $3^2 + 4^2 = 5^2$, $8^2 + 12^2 = 15^2$.

Converse of Pythagoras Theorem :

If there is a triangle such that the sum of the squares of two of its sides is equal to the square of the third side, it must be a right-angled triangle.

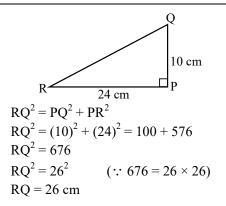
In $\triangle PQR$ if $PR^2 = PQ^2 + RQ^2$, then the triangle is right angled at Q.



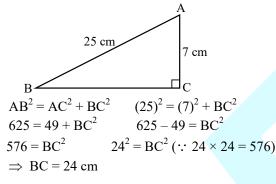
♦ EXAMPLES ♦

- **Ex.37** PQR is a triangle, right angled at P. If PQ = 10 cm and PR = 24 cm, find QR.
- **Sol.** In \triangle RPQ using Pythagoras theorem,

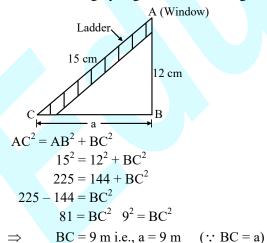
Power by: VISIONet Info Solution Pvt. LtdWebSite : www.edubull.comMob no. : +91-9350679141bit



- **Ex.38** ABC is a triangle, right angled at C. If AB = 25 cm and AC = 7 cm, find BC.
- Sol. In $\triangle ABC$, using Pythagoras theorem,



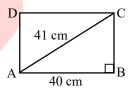
- Ex.39 A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance 'a'. Find the distance of the foot of the ladder from the wall.
- Sol. In $\triangle ABC$, using Pythagoras theorem, we get



- **Ex.40** A tree has broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of tree.
- Sol. Let AB be the tree and let C be the point at which it broke.

Then CB takes the position CD. 5 m 12 m To find : Original height of tree i.e., AB AC + BCi.e.. AC + CD(:: BC = CD) \Rightarrow In \triangle ACD, using Pythagoras theorem, we have $CD^{2} = AC^{2} + AD^{2}$ $CD^{2} = (5)^{2} + (12)^{2}$ = 25 + 144 = 169 $CD^2 = 13^2$ CD = 13 m= AC + BCSo, height of tree = AC + CD (::BC = CD)= (5 + 13)m = 18 mHence, height of tree = 18 m

Ex.41 Find the perimeter of the rectangle whose length is 40 cm and a diagonal is 41 cm.



Sol. Let ABCD is a rectangle, in which length AB = 40 cm, and a diagonal AC = 41 cm.

In rectangle each angle is of 90°. So, $\angle ABC = 90^{\circ}$

In $\triangle ABC$, using Pythagoras theorem,

 $AC^{2} = AB^{2} + BC^{2}$ $(41)^{2} = (40)^{2} + BC^{2}$ $\Rightarrow 1681 = 1600 + BC^{2}$ $\Rightarrow 1681 - 1600 = BC^{2}$ $\Rightarrow 81 = BC^{2}$ $\Rightarrow 9^{2} = BC^{2}$ $\Rightarrow BC = 9 \text{ cm}$ Hence, breadth of rectangle = 9 cm

Now, perimeter of rectangle

= 2 (length + breadth)

 $= 2 (40 + 9) \text{ cm} = 2 \times 49 \text{ cm}$

Hence, perimeter of rectangle = 98 cm

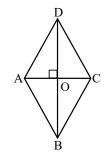
 Power by: VISIONet Info Solution Pvt. Ltd

 WebSite : www.edubull.com
 Mob no. : +91-9350679141

- Ex.42 The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.
- Sol. Let ABCD be a rhombus, in which diagonals

AC and BD are of lengths 16 cm and 30 cm respectively.

We know that in rhombus diagonals bisect each other at right angle i.e., AO = OC and OB = OD.



So,
$$\angle AOD = 90^{\circ}$$

$$AO = \frac{AC}{2} = \frac{16}{2} = 8 \text{ cm}$$

 $DO = \frac{BD}{2} = \frac{30}{2} = 15 \text{ cm}$

In $\triangle AOD$, using Pythagoras theorem, $AD^2 = AO^2 + DO^2$ $AD^2 = (8)^2 + (15)^2$

$$= 64 + 225$$

 $AD^2 = 289$ $AD^2 = 17^2$ AD = 17 cm

Perimeter of rhombus = $4 \times \text{side}$

 $= 4 \times AD = 4 \times 17 cm$

Hence, perimeter of rhombus = 68 cm

- **Ex.43** Angles Q and R of a $\triangle PQR$ are 25° and 65°. Which of the following is true :
 - (i) $PQ^2 + QR^2 = RP^2$ (ii) $PQ^2 + RP^2 = QR^2$ (iii) $RP^2 + OR^2 = PO^2$?

6<u>5°</u>∧_R

Sol. In **APOR**

$$\angle P + \angle Q + \angle R = 180^{\circ}$$
$$\angle P + 25^{\circ} + 65^{\circ} = 180^{\circ}$$
$$\angle P + 90^{\circ} = 180^{\circ}$$
$$\angle P = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

$$\Rightarrow \Delta PQR$$
 is right triangle in which $\angle P = 90^{\circ}$

÷ By Pythagoras theorem,

$$QR^2 = PQ^2 + PR^2$$

Hence, (ii) is true.

- Ex.44 Which of the following can be the sides of a right triangle?
 - (i) 2.5 cm, 6.5 cm, 6 cm
 - (ii) 2 cm, 2 cm, 5 cm

(iii) 1.5 cm, 2 cm, 2.5 cm?

Sol. As we know that in a right angled triangle, the square of longest (hypotenuse) is equal to sum of squares of other two sides.

(i) Let a = 2.5, b = 6.5, c = 6

$$a^2 + c^2 = [(2.5)^2 + (6)^2] \text{ cm}^2$$

= (6.25 + 36) cm²

$$= (6.25 + 36) \text{ cm}$$

 $a^2 + c^2 = 42.25 \text{ cm}^2$

 $b^2 = (6.5)^2 = 6.5 \times 6.5 = 42.25 \text{ cm}^2$ Now $a^{2} + c^{2} = b^{2}$ \Rightarrow

2.5 cm, 6.5 cm, 6 cm are the sides of \Rightarrow the right angled triangle.

ii) Let
$$a = 2, b = 2, c = 5$$

 $a^{2} + b^{2} = (2)^{2} + (2)^{2} = 4 + 4$
 $a^{2} + b^{2} = 8$
Jow, $c^{2} = (5)^{2} = 25$

Now,

 \Rightarrow

$$a^2 + b^2 \neq c^2 \qquad (\because 8 \neq 25)$$

2 cm, 2 cm and 5 cm are not the sides \Rightarrow of the triangle.

(iii) Let
$$a = 1.5$$
 cm, $b = 2$ cm, $c = 2.5$ cm
 $a^2 + b^2 = (1.5)^2 + (2)^2$
 $= 2.25 + 4 = 6.25$
 $c^2 = (2.5)^2$
 $= 6.25$
 $a^2 + b^2 = c^2$

Hence, 1.5 cm, 2 cm and 2.5 cm are sides of the right angled triangle.

- A man goes 24 m due east and then 10 m due Ex.45 north. How far is he away from his initial position?
- Sol. Let O be the initial position of the man. Let he cover OP = 24 m due east and then PQ = 10 m due north.

Finally, he reaches at point Q.

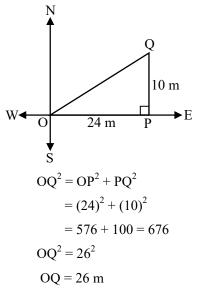
Power by: VISIONet Info Solution Pvt. Ltd WebSite : www.edubull.com

Mob no. : +91-9350679141

68

Join OQ which we have to find.

Now, in right $\triangle OPQ$ using Pythagoras theorem



Hence, the man is at a distance of 26 m from his initial position.

- **Ex.46** A ladder 13 m long reaches a window which is 5 m above the ground, on one side of street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window at a height of 12 m. Find the width of the street.
- Sol. Let AB be the street and C be foot of the ladder. Let D and E be the windows at the heights of 5 m and 12 m respectively from the ground. Then, CD and CE are the two position of the ladder. In Δ CDA, using Pythagoras theorem, we have

$$AC^{2} + AD^{2} = DC^{2}$$

$$AC^{2} = DC^{2} - AD^{2}$$

$$= 13^{2} - 5^{2}$$

$$= 169 - 25 = 144$$

$$AC^{2} = 12^{2}$$

$$AC = 12 m$$

$$F$$

$$AC = 12 m$$

$$B$$

Now, in \triangle BEC, using Pythagoras theorem,

$$CE2 = BE2 + BC2$$

$$(13)2 = (12)2 + BC2$$

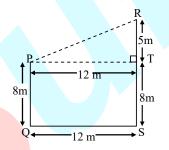
$$169 - 144 = BC2$$

$$25 = BC2$$

$$52 = BC2 \Rightarrow BC = 5 m.$$
Hence, width of the street
$$= AB = AC + BC$$

$$= 12 m + 5 m = 17 m$$

- **Ex.47** Two poles of 8 m and 13 m stand upright on a plane ground. If the distance between their feet is 12 m, find the distance between their tops.
- Sol. Let PQ and RS be the given poles such that PQ = 8 m, RS = 13 m and QS = 12 m.



Join PR (the distance between the tops of the poles which we have to find.)

From P, draw PT \perp RS.

•

 $RT = RS - TS \quad (TS = PQ = 8 m)$ = (13 - 8) mRT = 5 mPT = QS = 12 m

In ΔPRT , using Pythagoras theorem,

$$PR^{2} = PT^{2} + RT^{2}$$

$$PR^{2} = (12)^{2} + (5)^{2}$$

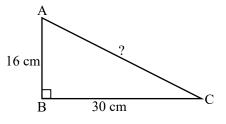
$$= 144 + 25 = 169$$

$$PR^{2} = 13^{2}$$

 \Rightarrow PR = 13 m.

Hence, the distance between the tops of the poles is 13 m.

Ex.48 Find the length of hypotenuse of the right-angled triangle given in figure.



 Power by: VISIONet Info Solution Pvt. Ltd

 WebSite : www.edubull.com
 Mob no. : +91-9350679141

Sol. In the figure, AC is the hypotenuse (the side opposite to right-angle).

From Pythagoras Theorem, $AC^2 = AB^2 + BC^2$

 $\Rightarrow AC \times AC = AB \times AB + BC \times BC$

$$\Rightarrow AC \times AC = 16 \times 16 + 30 \times 30$$

$$= 256 + 900 = 1156$$

 $= 34 \times 34$

On comparing both sides, we get

AC = 34 cm.

Sol. In this Δ , XZ is the hypotenuse (because XZ lies opposite to the right-angle Y).

Therefore, using Pythagoras theorem, we have

$$XZ^2 = XY^2 + YZ^2$$

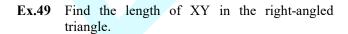
$$(13)^2 = XY^2 + (12)^2$$

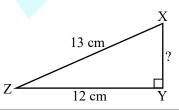
$$\Rightarrow XY^2 = 13^2 - 12^2 = 169 - 144 = 25$$

 $\Rightarrow \qquad (XY) \times (XY) = 25 = 5 \times 5$

$$\Rightarrow$$
 XY = 5 cm.

 \Rightarrow





Power by: VISIONet Info Solution Pvt. LtdWebSite : www.edubull.comMob no. : +91-935067914170

Power by: VISIONet Info Solution Pvt. Ltd WebSite : www.edubull.com

Mob no. : +91-9350679141