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States of Matter

INTRODUCTION
Matter as we know broadly exists in three states.
There are always two opposite tendencies between
particles of matter which determine the state of matter
 nter molecular attractive forces.
 The molecular motion / random motion.

In this chapter the properties and behaviour of the
gases will be analysed and discussed in detail. These
properties are measured with the help of the gas
laws as proposed Boyle,Charles,Gay lussac etc

BOYLE’S LAW AND MEASUREMENT
OF PRESSURE

Statement:
For a fixed  amount of gas at constant  temperature,
the  volume occupied by the gas is inversely
proportional to the pressure applied on the gas or

pressure of the gas. V 
P
1

hence PV = constant

this constant will be dependent on the amount of the
gas and temperature of the gas.

P1V1 = P2V2
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Application of Boyles Law : For the two parts ‘A’ and ‘B’  P1V1 = K & P2V2 = K
hence it follows that P1V1 = P2V2 .

Units
Volume     Pressure : Temperature

Volume of the gas is the    Pressure = N/m2 = Pa  S.I. unit Kelvin scale  Boiling point = 373 K
Volume of the container C.G.S unit = dyne-cm2 ice point = 273 K
S.I. unit  m3      Convert 1N/m2 into dyne/cm2 Fahrenheit scale  B.P. = 212º F

ice point = 32º F

C.G.S. unit cm3
24

5

2 cm10
dyne10

m1
N1

 Celcius scale  B.P. = 100ºC

1  = 10–3 m3          1N/m2 = 10 dyne/cm2 ice point = 0ºC
1  = 103 cm9

1dm3 = 1  = 10–3 m3 1 atm = 1.013 × 105 N/m2
32212

32F
273373

273K
0100

0C









1ml = 10–3  = 1 cm3      = )0(R)100(R
)0(RR




  where R = Temp. on unknown scale.

Atmospheric pressure :
The pressure exerted by atmosphere on earth’s
surface at sea level is called 1 atm.
1 atm = 1.013 bar
1 atm= 1.013 × 105 N/m2

  = 1.013 bar
   = 760 torr

Ex.1  A rubber balloon contains some solid marbles each
of volume 10 ml. A gas is filled in the balloon at a
pressure of 2 atm and the total  volume of the balloon
is 1 litre in this condition. If the external pressure is
increased to 4atm the volume of Balloon becomes
625 ml. Find the number of marbles present in the
balloon.

Sol. Let the no. of marbles be = n .
volume of marble = 10 n ml.
volume of balloon earlier = 1000 ml.
later = 625 ml.

Now for the gas inside the balloon temperature and
amount of the gas is constant, hence boyles law can
be applied

P1V1 = P2V2

4× (625 – 10n) = 2 × (1000 – 10n)
625 × 4 = 2000 – 20n + 40n
625 × 4 – 2000 = 20n

20
2000–4625 

 = n. 5
125

= n   ; n = 25

MEASUREMENT OF PRESSURE
Barometer :
A barometer is an instrument that is used for the
measurement of pressure.The construction of the
barometer is as follows
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    Cross sectional view of the capillary column

A mercury barometer is used to measure
atmospheric pressure by determining the height of a
mercury column supported in a sealed glass tube.
The downward pressure of the mercury in the column
is exactly balanced by the outside atmospheric
pressure that presses down on the mercury in the
dish and pushes it up the column.

A thin narrow calibrated capillary tube is filled to the
brim, with a liquid such as mercury, and is inverted
into a trough filled with the same fluid.Now depending
on the external atmospheric pressure, the level of
the mercury inside the tube will adjust itself, the
reading of which can be monitored. When the
mercury column inside the capillary comes to rest,
then the net forces on the column should be balanced.
Applying force balance, we get,

Patm  × A= m×g
(‘A’ is the cross-sectional area of the capillary tube)
If ‘’ is the density of the fluid, then m = × v
hence, Patm  × A = ( × g × h) × A (v = A × h)
(‘h’ is the height to which mercury has risen in the
capillary)

or, Patm  = gh

 Normal atmospheric pressure which we call 1
atmosphere (1 atm), is defined as the pressure
exerted by the atmosphere at mean sea level. It
comes out to be 760 mm of Hg = 76 cm of Hg. (at
mean sea level the reading shown by the barometer
is 76 cm of Hg)

1 atm = (13.6 × 103) × 9.8 × 0.76

 = 1.013 × 105 Pascal.

1 torr = 1 mm of Hg.

1 bar = 105 N/m2 (Pa)

Faulty Barometer : An ideal barometer will show
a correct reading only if the space above the mercury
column is vacuum, but in case if some gas column is
trapped in the space above the mercury column, then
the barometer is classified as a faulty barometer. The
reading of such a barometer will be less than the
true pressure.

For such a faulty barometer

P0A = Mg + Pgas A

P0 = gh + Pgas    or gh = P0 – Pgas

Ex.2 The reading of a faulty barometer is 700 mm of Hg.
When actual pressure is 750 mm of Hg. The length
of the air column trapped in this case is 10 cm .Find
the actual value of the atmospheric pressure when
reading of this barometer is 750 mm of Hg. Assume
that the length of the Barometer tube above mercury
surface in the container remains constant.
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Sol. P0 = Pgas + 700 g

 Pgas =  750 g – 700 g = 50 g

Now for the gas column in the capillary, amount and
temperature are constant hence P1V1  = P2 V2

(50 g) (100 A) = gasP  × (50 A)

 gasP  = 100 g

Now, applying force balance in the new conditions :

atmP  = gasP  + 750 g = 100 g + 750 g = 850 g

Hence, the atmospheric pressure is now, 850 cm of
Hg.

Ex.3 In each of the following examples, find the pressure
of the trapped gas.

Sol. Total pressure of gas column

= 75 + 10 = 85 cm of Hg.

Ex.4

Sol. Pgas = 65 cm of Hg.

Ex.5

Pg = 75 + 10 cos .
Sol. From the above problem, it can be generalised that,

applying force balance every single time is not
necessary. If we are moving up in a fluid, then
substract the vertical length, and while moving down
add the vertical length.

CHARLES LAW
For a fixed amount of gas at constant pressure volume
occupied by the gas is directly proportional to
temperature of the gas on absolute scale of
temperature.
V  T or V = kT

ttancons
T
V


where ‘k’ is a proportionality constant and is
dependent on amount of gas and pressure.

2

2

1

1

T
V

T
V



Temperature on absolute scale, kelvin scale or ideal
gas scale.
V = a + bt
Temperature on centigrade scale.
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Relation :   T = t + 273

 Since volume is proportional to absolute temperature.
The volume of a gas should be theoretically zero at
absolute zero temperature.

 Infact no substance exists as gas at a temperature
near absolute zero, though the straight line plots can
be extra plotted to zero volume. Absolute zero can
never be attained practically though it can be
approached only.

 By considering –273.15°C as the lowest
approachable limit, Kelvin developed temperature
scale which is known as absolute scale.

Ex.6 If the temp. of a particular amount of gas is increased
from 27ºC to 57ºC, find final volume of the gas, if
initial volume = 1 lt and assume pressure is constant.

Sol.
2

2

1

1

T
V

T
V



)57273(
V

)27273(
1 2






So V2 = 1.1 lt.

Ex.7 An open container  of volume 3 litre contains air at
1 atmospheric pressure. The container is heated from
initial  temperature 27ºC or 300 K to tºC or
(t + 273) K the amount of the gas expelled
from the container measured 1.45 litre at 17ºC
and 1 atm.Find temperature t.

Sol.  T0
1 = 300 K

It can be assumed that the gas in the container was
first heated to (t + 273), at which a volume ‘V’
escaped from the container
hence applying charles law :

300
3

 = 273t
V3




Now, this volume ‘V’ which escapes when the
container get cooled

 273t
V




 = 290
45.1

Solve the two equations and get the value of V
and t.
determine  V & calculate t that will be the answer.

CALCULATION OF PAY LOAD
Pay load is defined as the maximum weight that can
be lifted by a gas filled balloon.

For maximum weight that can be lifted, applying force
balance

Fbuoyancy = Mballoon × g + Mpay load × g
 air  v.g. = gas v.g + Mg + mg.
mass of balloon = m net force on
volume of balloon = v balloon = 0
density of air =  air (at equilibrium / when

balloon is incoming
density of gas inside the with constant speed)
balloon = gas



6

States of Matter

Ex.8 A balloon of diameter 20 m weights 100 kg.
Calculate its pay-load, if it is filled with He at 1.0
atm and 27ºC. Density of air is 1.2 kg m–3.
[R = 0.0082 dm3 atm K–1 mol–1]

Sol. Weight of balloon = 100 kg = 10 × 104 g

Volume of balloon = 
3

3 100
2

20
7
22

3
4r

3
4







 

= 4190 × 106 cm3 = 4190 × 103 litre

Weight of gas (He) in balloon = 
RT

PVM








  RT
M
wPV

= 
300082.0

41041901 3


 = 68.13 × 104 g

 Total weight of gas and balloon
= 68.13 × 104 + 10 × 104 = 78.13 × 104 g

Weight of air displaced = 3

6

10
1041902.1 

= 502.8 × 104 g
 Pay load = wt. of air displaced –

      (wt. of balloon + wt. of gas)
 Pay load = 502.8 × 104 – 78.13 × 104

= 424.67 × 104 g

GAY-LUSSAC’S LAW
For a fixed amount of gas at constant volume,
pressure of the gas is directly proportional to
temperature of the gas on absolute scale of
temperature.

P  T

T
P  = constant  dependent on amount and volume

of gas

2

2

1

1

T
P

T
P

  temperature on absolute scale

originally, the law was developed on the centigrade
scale, where it was found that pressure is a linear
function of temperature P = P0 + bt where ‘b’ is a
constant and P0 is pressure at zero degree centigrade.

Example : PV = K  V = K1/p

T
V  = K2  V = K2 T

P
K1 = K2T

PT = 
2

1

K
K

 = const.  P  = 
T
1 ?

   where are we wrong ?
This is wrong because we are varying
temperature &
K1 = f(1) thus K1 will change according to
temperature

So 
2

1

K
K

 will be a function of temp & not

constant.
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Ex.9The temperature of a certain mass of a gas is doubled.
If the initially the gas is at 1 atm pressure. Find the %
increase in pressure ?

Sol.
1

1

T
P

 = 
2

2

T
P

 ;
T
1  = 

T2
P2

% increase = 
1

1–2  x 100 = 100%

Ex.10 The temperature of a certain mass of a gas was
increased from 27°C to 37°C at constant volume.
What will be the pressure of the gas.

Sol.
1

1

T
P

 = 
2

2

T
P

 ; 300
P

 = 310
P2  ; P2 = 30

31
P

AVOGADRO’S HYPOTHESIS
For similar values of pressure & temperature equal
number of molecules of different gases will occupy
equal volume.
N1

  V
(volume of N1 molecules at P & T of one gas)

N1
  V

   (volume of N1 molecules at P & T of second gas)
 Molar volume & volume occupied by one mole of

each and every gas under similar conditions will be
equal.
One mole of any gas or a combination of gases
occupies 22.413996 L of volume at STP.
The previous standard is still often used, and
applies to all chemistry data more than decade
old, in this definition Standard Temperature and
Pressure STP denotes the same temperature of
0°C (273.15K), but a slightly higher pressure of
1 atm (101.325 kPa) .
Standard Ambient Temperature and Pressure
(SATP), conditions are also used in some
scientific works. SATP conditions means 298.15
K and 1 bar (i.e. exactly 105 Pa) At SATP (1 bar
and 298.15 K), the molar volume of an ideal gas
is 24.789 L mol–1 (Ref. NCERT )

EQUATION  OF STATE
Combining all the gas relations in a single expression
which discribes relationship between pressure,
volume and temperature, of a given mass of gas we
get an expression known as equation of state.

T
PV  = constant

(dependent on amount of the gas (n)).

1

11

T
VP

 = 
2

22

T
VP

Ideal  gas Equation :

nT
PV  = constant [universal constant]

= R      (ideal gas constant or universal gas constant)
R = 8.314 J/Kmole 25/3
    = 1.987 cal/mole 2
     = 0.08 Latm/K/mole 1/12

Ex.11 Some spherical balloons each of volume 2 litre
are to be filled with hydrogen gas at one atm & 27°C
from a cylinder of volume 4 litres. The pressure of
the H2 gas inside the cylinder is 20 atm at 127°C.
Find number of balloons which can be filled using
this cylinder. Assume that temperature of the cylinder
is 27°C.

Sol. No. of moles of gas taken initially

 = 400R
420




 = 2.43 L

No. of moles of gas left in cylinder

 = 300R
41




= 0.162L

No. of moles of gas to be filled in balloons
 = 2.43 – 0.162 = 2.268

Let we have 'n' balloons that we can fill
No. of moles of gas that can be filled in 1 balloon

= 300082.0
21



= 0.081

 0.081 × n = 2.268
    n = 28 balloons.
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DALTONS LAW OF PARTIAL PRESSURE

Partial pressure :
In a mixture of non reacting gases partial pressure of
any component of gas is defined as pressure exerted
by this component if whole of volume of mixture
had been occupied by this component only.

Partial pressure of first component gas

v
RTn

P 1
1  ;

v
RTn

P 2
2   ;

v
RTnP 3

3 

Total pressure = P1 + P2 + P3.

Daltons law :
For a non reacting gaseous mixture total pressure
of the mixture is the summation of partial pressure of
the different component gases.
PTotal = P1 + P2 + P3

v
RT)nnn( 321 



1
T

1

T

1 x
n
n

P
P



  (mole fraction of first component of gas)

2
T

2

T

2 x
n
n

P
P



    (mole fraction of second component of gas)

3
T

3

T

3 x
n
n

P
P



(mole fraction of third component of gas)

Ex.12 The stop cock connecting the two bulbs of volume
5 litre and 10 litre containing as ideal gas at 9 atm
and 6 atm respectively, is opened. What is the final
pressure if the temperature remains same.

Sol.  After the opening of the stop cock the pressure of
the each bulb will remain same.
At the beginning, the no. of moles of gas in

A = 
RT

6x10

At the beginning, the no. of moles of gas in

B = 
RT

9x5

 total no. of moles at the beginning = 
RT
105

Total no. of moles of gas before opening the stop
cock
= total no. of moles of gas after opening stop cock

= 
RT
105

 pressure after the opening of the stop cock

P = 
RT
105  x 

totalV
RT

 = 510
105
  = 7 atm

Ex.13 A mixture of NO2 & CO having total volume of
100 ml contains 70 ml of NO2 at 1 atm, mixture is
left for some time and same NO2 get dimerised to
N2O4 such that final volume of the mixture become
80 ml at 1 atm, calculate the mole fraction of NO2 in
final equilibrium mixture.

Sol. Initial volume of NO2 = 70 ml
Initial volume of CO = 100 – 70 = 30 ml
Final volume of mixture = 80 ml
Let the volume of NO2 in  final mixture be x
Let ‘v’ ml NO2  be converted to N2O4

2NO2
  N2O4

  V         V/2
Hence final volume
= volume of CO + volume of NO2 left + volume of

N2O4  formed
= 30 + 70 – V + V/2 = 80
V = 40 ml
Hence volume of NO2 left = 70 – V = 30 ml
Now as volume  moles

 mole fraction  = volume fraction  = 80
30

= 8
3
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ANALYSIS OF GASEOUS MIXTURE

Vapour density :
Vapour density of any gas is defined as the density
of any gas with respect to density of the H2 gas under
identical conditions of temperature T and pressure
P.

vapour density = T&PsameunderHofdensity
P&Tatgasofdensity

2

P = 
M

RT.
V
m

 P = 
M
RT

  = 
RT
PM

vapour density  = 
2H

gas

PMRT
RTPM

 = 
2H

gas

M
M

 = 
2

Mgas

Mgas = 2 × vapour density

Average molecular mass of gaseous mixture :
total mass of the mixture divided by total no. of moles
in the mixture

Mmix = mixtureinmolesof.noTotal
mixtureofmassTotal

If we have
‘n1’ , ‘n2’ and ‘n3’  are moles of  three different gases
having of molar mass ‘M1’, ‘M2’  and  ‘M3’
respectively.

Mmin = 
321

332211

nnn
MnMnMn




Ex.14 Calculate the mean molar mass of a mixture of
gases having 7 g of Nitrogen, 22 g of CO2 and 5.6
litres of CO at STP.

Sol. Moles of N2 = 7/28 = 1/4
Moles of CO2 = 22/44 = 1/2
Moles of CO = 5.6 / 22.4 = 1/4

mean molar mass = Mmin = 
321

332211

nnn
MnMnMn




 = ( 7 + 7 + 22 ) / 1 = 36

GRAHAM’S LAW OF
DIFFUSION/EFFUSION

Diffusion :
Net spontaneous flow of gaseous molecules from
region of high concentration (higher partial pressure)
to the region of lower concentration or lower partial
pressure

flow will be from both sides, N2 will try to
equalise its partial
pressure in both the vessels, and so will O2.

Graham’s Law :
“Under similar conditions of pressure (partial
pressure) the rate of diffusion of different gases is
inversely proportional to square root of the density
of different gases.”

 rate of diffusion r  d
1

d = density of gas

2

1

r
r

 = 
1

2

d

d
 = 

1

2

M

M
 = 

1

2

D.V
D.V

V.D is vapour density

r = volume flow rate  = 
dt

dVout

r = moles flow rate  = dt
dnout

r = distance travelled by gaseous molecules per

unit time = dt
dx
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 The general form of the grahams law of diffusion

can be stated as follows, when one or all of the
parameters are varied.

rate  TM
P

A

P – Pressure, A – area of hole, T – Temp. ,
M – mol. wt.

 If partial pressure of gases are not equal.
Then rate of diffusion is found to be proportional
to partial pressure & inversely proportional to
square root of molecular mass.

r  P

r  M
1

2

1

r
r

 = 
2

1

P
P

1

2

M
M

Selective diffusion :
If one or more than one components of a mixture
are allowed to diffuse and others are not allowed
then it is selective diffusion of those components.

 Platinum allows only H2 gas to pass through
Effusion : (forced diffusion) a gas is made to diffuse
through a hole by the application of external pressure.

Ex.15 In a tube of length 5 m having 2 identical holes at
the opposite ends. H2 & O2 are made to effuse into
the tube from opposite ends under identical
conditions. Find the point where gases will meet for
the first time.

Sol.
2

1

r
r

 =  dt
dx

 × dx
dt

 = 
1

2

M
M

2

1

dx
dx

 = 
2

32

2

1

dx
dx

 = 4 
2

2

Obytravelledcetandis
Hbytravelledcetandis

 = 4

)x5(
x
  = 4

x = (5 – x) 4 ;x = 20 – 4x ; 5x = 20 ;
x = 4 from H2 side

Ex.16 Assume that you have a sample of hydrogen gas
containing H2, HD and D2 that you want to separate
into pure components (H = 1H and D = 2H). What
are the relative rates of diffusion of the three
molecules according to Graham’s law ?

Sol. Since D2 is the heaviest of the three molecules, it will
diffuse most slowly, and let we call its relative rate
1.00. We can then compare HD and H2 with D2.
Comparing HD with D2, we have

diffusionDofRate
diffusionHDofRate

2

= HDofmassMolecular
DofmassMolecular 2

= amu0.3
amu0.4

= 1.15
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Comparing H2 with D2 we have

diffusionDofRate
diffusionHofRate

2

2

=
2

2

HofMass
DofMass

= amu0.2
amu0.4

= 1.41

Thus, the relative rates of diffusion are
H2(1.41) > HD (1.15) > D2(1.00).

KINETIC THEORY OF GASES
Postulates / assumptions of KTG :
 A gas consists of tiny spherical particles called

molecules of the gas which are identical in shape
& size (mass)

 The volume occupied by the molecules is
negligible in comparision to the total volume of
the gas.
For an ideal gas, volume of the ideal gas molecule
~ 0.

 Gaseous molecules are always in random motion
and collide with other gaseous molecules & with
the walls of the container.

 Pressure of the gas is due to these molecular
collisions among themselves and with walls of the
container

 These collisions are elastic in nature
 Molecular attraction forces are negligible. Infact,

for an ideal gas attractive or repulsive forces are
equal to zero.

 Newton’s laws of motion are applicable on the
motion of the gaseous molecules.

 Effect of gravity is negligible on molecular motion.
 The average K.E. of gaseous molecules is

proportional to the absolute temperature of the
gas.

2
1  M )u( 2  T (bar is for average)

Kinetic equation of gaseous state
(expression for pressure of gas).

Derivation :

m = mass of one molecule

U
  = Ux î  + Uy ĵ  + Uz k̂

Consider collision with face ABCD

inital iP


 = mUx î  ;

 final fP


 = – mUx î

change in momentum due to collision  = 2 Ux m
time taken between two successive collision with

face ABCD  = t = 
xU

2

frequency of collisions (f) = t
1

 = 2
Ux

change in momentum in one sec. = force

= 2 m 2
UU xx   = 

2
xUm

force due to all the molecules

= 
m

}Ux........UU{ 2
N

2
x

2
x 21



average value of 2
NU  = 2

NU

= 
N

U...........UUx 2
x

2
x

2
1 N2



Fx = 
M

}UN{ 2
x

all the three directions are equal as the motion is
totally random in all directions, hence

2
xU  = 2

yU  = 2
zU

2U  =  2
z

2
y

2
x UUU 

= 3 2
xU
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Fx = 
M

 . N 3
1

2U

Pressure = 2
xF
  = 3

1
3

N


2U

The volume of the container ‘V’ = 3

   PV = 3
1

 mN 2U    Kinetic equation of gases

where 2U  is mean square speed

root mean square speed =     Urms = 2U

= 








 
N

U......UUU 2
N

2
3

2
2

2
1

Verification of Gaseous Laws Using Kinetic
Equation :

 From postulates ; PV = 3
1

 mN 2U

2
1  m  2U  T =  T
Where ’‘ is a proportionality constant

PV = 3
2 







 2Um
2
1

 N ;

PV = 3
2
 NT (N = Total number of molecules)

 Boyle’s Law : N : constant
T : constant
PV = constant

 Charles law : N : constant
P : constant
V  T

 Kinetic energy of gaseous molecule
      (translational K.E.)

To calculate  we have to use ideal gas equation
(experimental equation)

PV = nRT

Kinetic equation PV = 3
2
 nRT = 3

2


(nNA) T (n = number of moles of gas)

on comparing  = 
2
3  × 

AN
R

 =  
2
3  K where K = 

AN
R

= Boltzmann constant

Average K.E. of molecules = 
2
1  m 2U  = T

Average K.E. = 
2
3 K TT

(only dependent on temperature not on nature
of the gas.)

Average K.E. for one mole =  NA







 2Um
2
1

= 
2
3   K NA T  = 

2
3  RTT

 Root mean square speed :

Urms =  2U  = 
m
kT3   = 

ANm
TR3

Where m-mass of one molecule
 Dependent on nature of gas  i.e mass of the gas

Urms = 
M

TR3 M = molar mass

 Average speed :
Uav = U1 + U2 + U3 + ............ UN

Uav = M
RT8


 = m
KT8


K  is Boltzmman constant
 Most probable speed :

The speed possessed by maximum number of
molecules at the given temperature

UMPS = 
M
RT2  = 

m
KT2
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Ex.17 In a container of capacity 1 litre there are 1023

molecules each of mass 10–22 gms. If root mean
square speed is 105 cm/sec then calculate pressure
of the gas.

Sol. PV = 3
1

 MN 2U

P = ?
V = 10–3 m3

m = 10–25 kg
N = 1023

2U  = 105 cm/sec = 103 m/sec

2U  = 106 m2 /sec2

P × 10–3  = 3
1

 × 10–25 × 1023 × 106

P = 3
1

 × 10–2 × 106 × 103

P = 3
1

 × 107 pascals

MAXWELL’S DISTRIBUTIONS
OF MOLECULAR SPEEDS

Postulates/Assumptions of speed distributions
 It is based upon theory of probability.
 It gives the statistical  averages of the speed of

the whole collection of gas molecules.
 Speed of gaseous molecules of may vary from

0 to . The maxwell distribution of speed can
be plotted against fraction of molecules as
follows.

 The area under the curve will denote fraction
of molecules having speeds between zero and
infinity

 Total area under the curve will be constant and
will be unity at all temperatures.

 Area under the curve between zero and u1 will
give fraction of molecules racing speed between
0 to u1 . This fraction is more at T1 and is less at
T2 .

 The peak corresponds to most probable speed.
 At higher temperature,  fraction of molecules

having speed less than a particular value
decreases.

 For Gases with different molar masses will have
following graph at a given temperature.

REAL GASES
 Real gases do not obey the ideal gas laws

exactly under all conditions of temperature and
pressure.

 Real gases deviates from ideal behaviour
because
 Real gas molecules have a finite volume.

{since on liquefaction real gases occupy a
finite volume}

 Inter molecular attractive forces between
real gas molecules is not zero.
{Real gases can be converted into liquid
where as ideal gases cant be}

 Deviation of real gases from ideal behaviour can
be measured by using compresibility factor : (Z)
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Z = 
ideal

real

)PV(
)PV(

(PV)ideal = nRT

Z = 
nRT
PV  = 

RT
PVm , VM is volume of one mole of gas

or molar volume.

Z = 
idealm

m

V
V

Variation of Z with pressure at constant
temperature :

Variation of Z with pressure at different
temperature (for a gas ) :

Conclusions :

Z = 1 for ideal gas ;
Z > 1 at all pressures for He/H2

Z < 1 at low pressure  (for all other gases) ;
Z > 1 at high pressure  (for all other gases)

VANDER WAAL EQUATION
OF REAL GASES

The ideal gas equation does not consider the effect
of attractive forces and molecular volume.
vander Waal's corrected the ideal gas equation by
taking the effect of
(a) Molecular volume
(b) Molecular attraction

 Volume correction :
Ideal gas equation :

Pi Vi = nRT ; In the equation ‘Vi’ stands for the
volume which is available for free movement of the
molecules.
Videal  = volume available for free movement of
gaseous molecule
hence, Vi = V – {volume not available for free
movement} For an ideal gas

Vi = V {V = volume of container}
but for a real gas
Vi  V , as all the volume is not available for free
movement

Molecules have finite volume :

Excluded volume per molecule = 
2
1







  3)r2(

3
4

 = Co-volume per molecule.
The volume that is not available for free movement
is called excluded volume.
let us see, how this excluded volume is calculated.
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For above example, the entire shaded region is
excluded, as its centre of mass cannot enter this
region.
If both molecules were ideal, then they would not
have experienced any excluded volume but not in
the case, of real gas as the centre of mass of ‘2’
cannot go further.
Hence for this pair of real gas molecules,
Excluded volume per molecule

= 
2
1







  3)r2(

3
4

 = 4 






  3r

3
4

excluded volume per mole of gas (b)

= NA 4 






  3r

3
4

=  4 x NA x Volume of individual molecule
for n moles, excluded volume  = nb

Vi = V – nb volume correction

 Pressure correction or effect of molecular
attraction forces :

Due to these attraction, speed during collisions will
be reduced
Momentum will be less
Force applied will be less
Pressure will be less.
Pideal = P + {correction term}
Correction term  no. of molecules attracting the
colliding molecule  (n/v).
Correction term  density of molecules (n/v).

no. of collision  density of molecules  







v
n

net correction term  







v
n









v
n

 = 2

2

v
an

‘a’ is constant of proportionality
and this is dependent on force of attraction
Stronger the force of attraction greater will be ‘a’
(Constant)

Pi = P + 2

2

v
an

Vander waal’s equation is













2

2

v
anP  (v – nb) = nRTT

VERIFICATION OF VANDER
WAAL’S EQUATIONS

Variation of Z with P for vander waals' equation at
any temp.

Vander waal equation for 1mole











 2

mV
aP  (Vm – b) = RTT

 AT LOW PRESSURE (at separate temp.)
At low pressure Vm will be high.
Hence b can be neglected in comparision to Vm. but

2
mV
a

 can't be neglected as pressure is low

Thus equation would be











 2

mV
aP  VVm = RT

PVm + 
mV
a

 = RTT

RT
PVm  + RTV

a

m
 = 1

Z = 1 – RTV
a

m
Z < 1

Real gas is easily compressible as compared to an
ideal gas.
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 AT HIGH PRESSURE (moderate temp.)

V m will be low
so b can't be neglected in comparision to Vm

but 2
mV
a

 can be  neglected as compared to much

higher values of P.
Then vander Waals' equation will be
P(Vm – b) = RT
PVm – Pb = RT

RT
PVm  = 

RT
Pb  + 1

Z = 
RT
Pb + 1 (Z > 1)

If Z > 1, then gas is more difficult to compress
as compared to an ideal gas.

 At low pressure and very high temperature.
Vm will be very large

hence ‘b’ can't be neglected and 2
mV
a

 can also
be neglected as Vm is very large
PVm = RT (ideal gas condition)

 For H2 or He  a ~ 0 because molecules are
smaller in size or vander Wall's forces will be
very weak, these are non polar so no dipole-
dipole interactions are present in the actions.

P(Vm – b) = RT so Z = 1 + 
RT
Pb

 ‘a’ factor depends on inter molecular attractive
forces.
 ‘a’ factor for polar molecule > ‘a’ factor
for non polar molecule.

Ex.18 Arrange following in decreasing ’a’ factor
(H2O, CO2, Ar)
H2O  > CO2> Ar
polar

For non polar molecules :
Greater the size or surface area, greater will be
vander waals' forces, so greater will be ’a’ constant.

Ex.19 Arrange following gases according to ‘a’
He , Ar, Ne, Kr.
aKr > aAr > aNe > aHe

More ‘a’ factor means higher will be boiling
point.

 liquification pressure :
Is the pressure required to convert gas into
liquid.
for easy liquefaction a and P
When Z < 1, Vm < Vm, ideal

 easily liquifiable
Z > 1, Vm > Vm, ideal

 more difficult to compress.

Ex.20 Arrange the following according to liquification
pressure.

n-pentane ; iso-pentane , neo pentane.
an-pentene > aiso-pentane > aneo-pentane

liquification pressure = LP

etanpennPL
  < etanpenisoPL  < etanpenneoPL

 b is roughly related with size of the molecule.
(Thumb rule)

b  = NA 4 






  3r

3
4

Ex.21 Two vander waals gases have same value of b but
different a values. Which of these would occupy
greater volume under identical conditions ?

Sol. If two gases have same value of 'b' but different
values of 'a', then the gas having a larger value of 'a'
will occupy lesser volume. This is because the gas
with a larger value of 'a' will have larger force of
attraction and hence lesser distance between its
molecules.
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VIRIAL EQUATION OF STATE
It is a generalised equation of gaseous state. All other
equations can be written in the form of virial equation
of state.
Z is expressed in power series expansion of P or










mV
1

Z = 1 + 
mV

B
 + 2

mV
C

 + 3
mV

D
 +  .....................

B – second virial coefficient
C – third virial coefficient
D – fourth virial coefficient

Vander waals' equation in virial form :











 2

mV
a

P  (Vm – b) = RTT

P = )bV(
RT
m   – 2

mV
a

Z = 
RT

PVm  = )bV(
V

m

m

  – RTV
a

m

= )V/b1(
1

m  – RTV
a

m

x1
1


 = 1 + x + x2 + x3 + ..........

Z = 









 .........

V
b

V
b

V
b1 3

m

3

2
m

2

m
 – 

RTV
a

m

= 1 + 
mV
1








 
RT
ab  + 2

m

2

V
b

 + 3
m

3

V
b

 + .................

comparing vander waals equation with virial equation

B = b – 
RT
a  ,

C = b2, D = b3

at low pressure  : Vm will be larger

hence 2
mV
1

 ,  3
mV
1

 ................ can be neglected

Z = 1 + 
mV
1








 
RT
ab

If 






 
RT
ab   = 0

 at T = Rb
a

; Z = 1

so at T = Rb
a

, gas will behave as an ideal gas (or

follows Boyles law)
But at constant temperature, ideal gas equation is

obeying Boyles law as T = Rb
a

, so the temperature
is called Boyles' temp.

TB = Rb
a

Z = 1 – RTV
a

m

for a single gas, if we have two graphs as above, we
must conclude T2 < T1 . At Boyles' temperature ‘a/
RT’ factor is compensated by 'b' factor, so Z = 1.



18

States of Matter
CRITICAL CONSTANT OF A GAS

When pressure increases at constant temperature
volume of gas decreases

AB  gas
BC  vapour + liquid
CD  liquid
critical point : At this point, all the physical properties
of liquid phase will be equal to physical properties in
vapour such that

density of liquid = density of vapour
TC or critical temp :
Temperature above which a gas can not be liquified
PC or critical pressure :
minimum pressure which must be applied at critical
temperature to convert the gas into liquid.
VC or critical volume :
volume occupied by one mole of gas at TC & PC

Critical constant using vander waals' equations :











 2

mV
aP  (Vm – b) = RTT

( aPV2
m  ) (Vm – b) = RT VVm

2

PVm
3 + aVm – PbVm

2 – ab – RTVm
2 = 0

Vm
3 – Vm

2 






 
P

RTb  + 
P
a  Vm – 

P
ab  = 0

Given equation is cubic, hence there will be three
roots of equation at any temperature and pressure.
At critical point, all three roots will coincide and will
give single value of V = VC

At critical point, Vander Waals' equation will be

Vm
3 – Vm

2 









C

C

P
RTb  + 

CP
a

 Vm – 
CP

ab
 = 0    ...(1)

But, at critical point, all three roots of the equation
should be equal, hence equation should be :
Vm

3 – 3Vm
2 VC + 3Vm VC

2 – VC
3 = 0 ...(2)

comparing with equation (1)

b + 
C

C

P
RT

 = 3VC ....(i)

CP
a

 = 3 VC
2 ...(ii)

CP
ab

 = VC
3 ...(iii) 

PC = 2
CV3

a
On substituting value of VC

PC = 2)b3(3
a

 = 2b27
a

by (i)
C

C

P
RT

 = 3 VC – b = 9b – b = 8b

TC = Rb27
a8

At critical point, the slope of PV curve (slope of
isotherm) will be zero

CTmV
P












 = 0 ...(i)

at all other point slope will be negative
0 (zero) is the maximum value of slope.

mV


CTmV
P












 = 0 ....(ii)

{Mathematically such points are known as point of
inflection (where first two differentiation becomes
zero)}
using the two, TC, PC and VC can be calculated

by
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By any two a can be calculated but a calculated by
VC and TC and a calculated  by TC and PC may differ
as these values are practical values and VC can’t be
accurately calculated. So when we have VC TC &
PC given, use PC & TC to deduce ‘a’ as they are
more reliable.

REDUCED EQUATION OF STATE

Reduced Temp : Temperature in any state of gas
with respect to critical temp of the gas

Tr = 
CT

T

Reduced pressure  : Pr = 
CP

P

Reduced volume : Vr = 
C

m

V
V

Vander waals' equation,











 2

mV
aP  (Vm – b) = RTT

Substitute values :











 2

C
2
r

Cr VV
a

PP  (Vr VVC – b) = R Tr TC

Substitute the value of PC TC and VC











 22

r
2r )b3(V

a
b27

aP  (3b VVr – b) = RTr Rb27
a8











r

r

V
1

3
P

 (3 VVr – 1) = 
3
TR8 r











 2

r
r V

3P  (3Vr – 1) = 8 TTr

      (Reduced equation of state)

Above equation is independent from a, b and R, so
will be followed by each and every gas, independent
of its nature.

Ex.22 The vander waals constant for HCI are a =
371.843 KPa.dm6 mol–2 and b = 40.8 cm3 mol–1

find the critical constant of this substance.
Solution : The critical pressure,

PC = 2b27
a

 = 62

3

10)8.40(27
10843.371




= 2

9

)8.40(27
10843.371




 = 8.273 x 106

PC = 8.273 MPa

The critical pressure, TC = Rb27
a8

R = 8.314 KPa dm3 K–1 mol–1

TC = Rb27
a8

 = 3108.4027314.8
843.3718





= 324.79 = 324.8 K
The critical volume, VC = 3b = 3 x 40.8

       = 122.4 cm3

Ex.23 The vander waals constant for gases A, B and C
are as follows :
Gas a/dm6 KPa mol–2 b/dm3 mol–1

A 405.3 0.027
B 1215.9 0.030
C 607.95 0.032
Which gas has
(i) Highest critical temperature
(ii) The largest molecular volume
(iii) Most ideal behaviour around STP ?

Sol. TC = Rb27
a8

 Since, R is constant, higher the value of
a/b, higher will be critical temperature.
VC = 3b and VC  Vm (for a particular gas) therefore
higher the value of VC , higher will be molar volume
of the gas.
If the critical temperature is close to 273 K, gas will
behave ideally around the STP. Let us illustrate the
result in a tabular form.
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Gas a/dm6KPa mol–2        b/dm3mol–1 TC VC a/b
A 405.3 0.027 534.97 K 0.081 1.501 x 104

B 1215.9 0.030 1444.42 K 0.09 4.053 x 104

C 607.95 0.032 677.07 K 0.096 1.89 x 104

(i) B gas has the largest critical temperature.
(ii) C gas has the largest molecular volume.
(iii) A gas has the most ideal behaviour around STP

VAPOUR PRESSURE OF A LIQUID
(AQUEOUS TENSION OF WATER)

Vapour pressure depends on
(a) Temperature (T   VP )
(b) Nature of the liquid
Vapour pressure is independent of amount of liquid
& surface area of liquid.
Vapour pressure of the liquid is independent of
pressure of any gas in the container,

Ptotal = Pgas + Pwater vapour

Ex.24 In a container of capacity 1 litre, air and some liquid
water is present in equilibrium at total pressure of  200
mm of Hg. This container is connected to another
one litre evacuated container. Find total pressure inside
the container when equilibrium is again stablised
(aqueous tension or vapour pressure at this temp. is
96 mm Hg).

Sol. Total pressure = 200 mm of Hg =  Pgas + Pvapour water

   Pgas + 96 = 200
Pgas = 104 mm of Hg Initially

when second container is connected
P1 = 104 mm of Hg P2 = ?
V1 = 1 V2 = 2 litre

P1 V1 = P2 V2

104 × 1 = P2 × 2
52 = P2

After equilibrium is established
Ptotal = 52 + 96 = Pgas + Pwater

 = 148 mm of Hg at equilibrium.

EUDIOMETRY
The analysis of gaseous mixtures is called eudiometry.
The gases are identified by absorbing them in
specified and specific reagents.

SOME COMMON FACTS
 Liquids and solutions can absorb gases.
 If a hydrocarbon is burnt, gases liberated will be

CO2 & H2O. [H2O is seperated out by cooling the
mixture & CO2 by absorption by aqueous KOH]

 If organic compound contains S or P, then these are
converted into SO2 & P4O10 by burning the organic
compound.

 If nitrogen is present, then it is converted into N2.
[The only exception : if organic compound
contains – NO2 group then NO2 is liberated]

 If mixture contains N2 gas & this is exploded with
O2 gas, do not assume any oxide formation unless
specified.

 Ozone is absorbed in turpentine oil and oxygen in
alkaline pyragallol.
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Ex.25 Carbon dioxide gas (CO2) measuring 1 litre is
passed over heated coke the total volume of the
gases coming out becomes 1.6 litre. Find %
conversion of CO2 into carbon monoxide.

Sol. CO2 + C   2CO CO2 CO
   1   0 at time t 1 – x 2x
Initial volume = 1 litre
final volume = 1.6 litre
Final volume = (1 + x) litres

1 + x = 1.6
      x = 0.6
      x = 0.6

1
6.0  × 10 = 60% of CO2 will be converted into CO

Ex.26 100 ml of hydrocarbon is mixed with excess of
oxygen and exploded. On cooling, the mixture was
reported to have a contraction of 250 ml. The
remaining gas when passed through a solution of
aqueous KOH, the mixture shows a further
contraction of 300 ml. Find molecular formula of
the hydrocarbon.

Sol. Cx Hy + 





 

4
Yx  O2

  CO2    +     OH
2
y

2

100 ml  100
2
y  100.

mixture contains CO2 , H2O & excess O2

on cooling, H2O is separated, volume of H2O
= 250 ml

2
y  × 100  = 250 ;   y = 5,

as KOH absorbs CO2, hence 300 ml contraction is
because of CO2 that has been absorbed.
Volume of CO2 = 100 x   = 300 ;       x   = 3
Empirical formula = C3 H5   ;
molecular formula = C6 H10.

Note : If water is already condensed out then total
contraction in reaction mixture = {volume of
reactants} – {volume of products + volume of
unused species excluding volume of H2O}.

Ex.27 100 ml of an hydrocarbon is burnt in excess of
oxygen in conditions so that water formed gets
condensed out the total contraction in volume of
reaction mixture was found to be 250 ml when the
reaction mixture is further exposed to aqueous KOH
a further contraction of 300 ml is observed find
molecular formula of hydrocarbon.

Sol. Using balanced chemical equation

Cx Hy     +  






 
4

yx
O2

  xCO2       +  
2
y   H2O

t = 0 100 ml     V 0        0

t 0 V – 100 






 
4
yx 100 x ml       

2
y100

volume remained

V–100 






 
4
yx  + 100x + 50y

–100 – V = 250
–25y + 50y = 150
25y = 150
y = 6


