
Page # 1ROTATIONAL MOTION & CENTER OF MASS

Power by: VISIONet Info Solution Pvt. Ltd  Website : www.edubull.com   Mob no. : +91-9350679141
1

1. RIGID BODY
Rigid body is defined as a system of particles in which distance between each pair of particles remains
constant (with respect to time) that means the shape and size do not change, during the motion. Eg. Fan,
Pen, Table, stone and so on.
Our body is not a rigid body, two blocks with a spring attached between them is also not a rigid body. For
every pair of particles in a rigid body, there is no velocity of seperation or approach between the particles.

In the figure shown velocities of A and B with respect to ground are 

VA  and 


VB respectively
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If the above body is rigid
VA cos 1  = VB cos 2

Note : With respect to any particle of rigid body the motion of any other particle of that rigid body is
circular.

VBA = relative velocity of B with respect to A.

 

Types of Motion of rigid body

Pure Translational
Motion

Pure Rotational
Motion

Combined Translational and 
Rotational Motion

1.1. Pure Translational Motion :
A body is said to be in pure translational motion if the displacement of each particle is same during any

time interval however small or large. In this motion all the particles have same 
 
s v,  & a  at an instant.

Example.
A box is being pushed on a horizontal surface.

16
10

6 6
10

 
V Vcm   of any particle,

 
a acm   of any particle
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S Scm   of any particle

For pure translational motion :-
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Where m1, m2, m3, ......... are the masses of different particles of the body having accelerations
  
a a a1 2 3, , ,...............  respectively..

But acceleration of all the particles are same So, a.........aaa 321




 
F Maext 
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Where M = Total mass of the body

a  = acceleration of any particle or of centre of mass of body
   
P m v m v m v   1 1 2 2 3 3 .............

Where m1, m2, m3 ...... are the masses of different particles of the body having velocities 
  
v v v1 2 3, , .............

respectively
But velocities of all the particles are same so 

   
v v v v1 2 3   ..........

 
P Mv

Where 
v  = velocity of any particle or of  centre of mass of the body..

Total Kinetic Energy of body =  22
22
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

1.2.  Pure Rotational Motion :
A body is said to be in pure rotational motion if the perpendicular distance of each particle remains
constant from a fixed line or point and do not move parallel to the line, and that line is known as axis of

rotation. In this motion all the particles have same 
 
 ,  and 

  at an instant. Eg. : - a rotating ceiling fan,

arms of a clock.
For pure rotation motion :-

 
s

r
 Where  = angle rotated by the particle

s = length of arc traced by the particle.

r = distance of particle from the axis of rotation.
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


d

dt
 Where  = angular speed of the body..





d

dt
 Where  = angular acceleration of the body..

All the parameters ,  and  are same for all the particles. Axis of rotation is perpendicular to the plane of
rotation of particles.

Special case : If  = constant,
 = 0 + t Where 0 = initial angular speed

   0
21

2
t t t = time interval

2 = 0
2 + 2

Total Kinetic Energy   
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
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2I  Where I = Moment of Inertia = m r m r1 1

2
2 2

2 .......

 = angular speed of body.
1.3 Combined translation and rotational Motion

A body is said to be in translation and rotational motion if all the particles rotates about an axis of rotation
and the axis of rotation moves with respect to the ground.

2. MOMENT OF INERTIA
Like the centre of mass, the moment of inertia is a property of an object that is related to its mass
distribution. The moment of inertia (denoted by I) is an important quantity in the study of system of
particles that are rotating. The role of the moment of inertia in the study of rotational motion is analogous
to that of mass in the study of linear motion. Moment of inertia gives a measurement of the resistance of
a body to a change in its rotaional motion. If a body is at rest, the larger the moment of inertia of a body
the more difficuilt it is to put that body into rotational motion. Similarly, the larger the moment of inertia of
a body, the more difficult to stop its rotational motion. The moment of inertia is calculated about some
axis (usually the rotational axis).
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Moment of inertia depends on :
(i) density of the material of body
(ii) shape & size of body
(iii) axis of rotation
In totality we can say that it depends upon distribution of mass relative to axis of rotation.
Note :
Moment of inertia does not change if the mass :
(i) is shifted parallel to the axis of the rotation
(ii) is rotated with constant radius about axis of rotation

2.1 Moment of Inertia of a Single Particle
For a very simple case the moment of inertia of a

single particle about an axis is given by,

r

I = mr2 ...(i)
Here, m is the mass of the particle and r its distance from the axis under consideration.

2.2 Moment of Inertia of a System of Particles
The moment of inertia of a system of particles about an axis is given by,

I = m ri i
i

2 ...(ii)

m1

m2

m3
r3

r2

r1

where ri is the perpendicular distance from the axis to the ith particle, which has a mass mi.

2.3 Moment of Inertia of Rigid Bodies

For a continuous mass distribution such as found in a rigid body, we replace the summation of I m ri i
i

 2 byy

an integral. If the system is divided into infinitesimal element of mass dm and if r is the distance from a

mass element to the axis of rotation, the moment of inertia is, I = r dm2
where the integral is taken over the system.                                                       

r

(A) Uniform rod about a perpendicular bisector
Consider a uniform rod of mass M and length l  figure and suppose the moment of inertia is to be calculated
about the bisector AB. Take the origin at the middle point O of the rod. Consider the element of the rod
between a distance x and x + dx from the origin. As the rod is uniform,
Mass per unit length of the rod = M/ l

so that the mass of the element = (M/ l)dx.

x dx

B

A

0
The perpendicular distance of the element from the line AB is x.
The moment of inertia of this element about AB is

d
M

dx xI 
l

2 .

When x = – l/2, the element is at the left end of the rod. As x is changed from – l/2 to l/2, the elements
cover the whole rod.
Thus, the moment of inertia of the entire rod about AB is
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I

(B) Moment of inertia of a rectangular plate about a line parallel to an edge and passing through the
centre
The situation is shown in figure. Draw a line parallel to AB at a distance x from it and another at a distance
x + dx. We can take the strip enclosed between the two lines as the small element.
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x

dx

b

B

A

l

It is “small” because the perpendiculars from different points of the strip to AB differ by not more than dx.
As the plate is uniform,

its mass per unit area = 
M

bl

Mass of the strip = 
M

b
bdx

M
dx

l l
 .

The perpendicular distance of the strip from AB = x.

The moment of inertia of the strip about AB = dI = 
M

dxx
l

2 . The moment of inertia of the given plate is,

therefore,

 12

M
dxx

M 22/

2/

2 l

l

l

l

 


I

The moment of inertia of the plate about the line parallel to the other edge and passing through the
centre may be obtained from the above formula by replacing l by b and thus,

I 
Mb2

12
.

(C) Moment of inertia of a circular ring about its axis (the line perpendicular to the plane of the ring
through its centre)
Suppose the radius of the ring is R and its mass is M. As all the elements of the ring are at the same
perpendicular distance R from the axis, the moment of inertia of the ring is

I      r dm R dm R dm MR2 2 2 2 .

(D)Moment of inertia of a uniform circular plate about its axis
Let the mass of the plate be M and its radius R. The centre is at O and the axis OX is perpendicular to the
plane of the plate.

R

x
0

X

dx

Draw two concentric circles of radii x and x + dx, both centred at O and consider the area of the plate in
between the two circles.
This part of the plate may be considered to be a circular ring of radius x. As the periphery of the ring is 2
x and its width is dx, the area of this elementary ring is 2xdx. The area of the plate is  R2. As the plate
is uniform,

Its mass per unit area = 
M

R 2

Mass of the ring  
M

R
xdx

Mxdx

R


2 2
2

2

Using the result obtained above for a circular ring, the moment of inertia of the elementary ring about OX
is

d
Mxdx

R
xI  





2

2
2

.
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The moment of inertia of the plate about OX is

2

MR
dxx

R

M2 2
3

R

0
2

 I .

(E) Moment of inertia of a hollow cylinder about its axis
Suppose the radius of the cylinder is R and its mass is M. As every element of this cylinder is at the same
perpendicular distance R from the axis, the moment of inertia of the hollow cylinder about its axis is

222 MRdmRdmr  I

(F) Moment of inertia of a uniform solid cylinder about its axis
Let the mass of the cylinder be M and its radius R. Draw two cylindrical surface of radii x and x + dx coaxial
with the given cylinder. Consider the part of the cylinder in between the two surface. This part of the
cylinder may be considered to be a hollow cylinder of radius x. The area of cross-section of the wall of this
hollow cylinder is 2 x dx. If the length of the cylinder is l, the volume of the material of this elementary
hollow cylinder is 2 x dxl.
The volume of the solid cylinder is  R2 l and it is uniform, hence its mass per unit volume is





M

R2 l
The mass of the hollow cylinder considered is

M

R
xdx

M

R
xdx




2 2
2

2

l
l  .

dx

x

As its radius is x, its moment of inertia about the given axis is

d
M

R
xdx xI  





2

2
2
.

The moment of inertia of the solid cylinder is, therefore,

I  
2

22
3

0

2M

R
x dx

MR
R

.

Note that the formula does not depend on the length of the cylinder.
(G)Moment of inertia of a uniform hollow sphere about a diameter

Let M and R be the mass and the radius of the sphere, O its centre and OX the given axis (figure). The
mass is spread over the surface of the sphere and the inside is hollow.
Let us consider a radius OA of the sphere at an angle  with the axis OX and rotate this radius about OX.
The point A traces a circle on the sphere. Now change  to  + d and get another circle of somewhat
larger radius on the sphere. The part of the sphere between these two circles, shown in the figure, forms
a ring of radius R sin. The width of this ring is Rd and its periphery is 2R sin. Hence,
the area of the ring = (2R sin) (Rd).

Mass per unit area of the sphere 
M

R4 2
.

The mass of the ring  
M

R
R Rd

M
d

4
2

22
    ( sin )( ) sin .

R sin
A

Rd

R

d

x

0

The moment of inertia of this elemental ring about OX is

d
M

d RI  



2

2sin . ( sin )    
M

R d
2

2 3sin  

As  increases from 0 to , the elemental rings cover the whole spherical surface. The moment of inertia of
the hollow sphere is, therefore,

I   

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 
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
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(H)Moment of inertia of a uniform solid sphere about a diameter
Let M and R be the mass and radius of the given solid sphere. Let O be centre and OX the given axis. Draw
two spheres of radii x and x + dx concentric with the given solid sphere. The thin spherical shell trapped
between these spheres may be treated as a hollow sphere of radius x.

The mass per unit volume of the solid sphere
x

dx

0

x

= 
M

R

M

R4
3

3

43
3

 


The thin hollow sphere considered above has a surface area 4x2 and thickness dx. Its volume is
4  x2 dx and hence its mass is

= 
3

4
4

3
2M

R
x dx












 ( )  = 

3
3

2M

R
x dx

Its moment of inertia about the diameter OX is, therefore,

dl = 
2

3

3
3

2M

R
x dx







x2      = 

2
3

4M

R
x dx

If x = 0, the shell is formed at the centre of the solid sphere. As x increases from 0 to R, the shells cover
the whole solid sphere.
The moment of inertia of the solid sphere about OX is, therefore,

I = 2
3

4

0

M

R
x dx

R

  = 2

5
2MR .

3. THEOREMS OF MOMENT OF INERTIA
There are two important theorems on moment of inertia, which, in some cases enable the moment of
inertia of a body to be determined about an axis, if its moment of inertia about some other axis is known.
Let us now discuss both of them.

3.1 Theorem of parallel axes
A very useful theorem, called the parallel axes theorem relates the moment of inertia of a rigid body about
two parallel axes, one of which passes

through the centre of mass.               

COM

r

Two such axes are shown in figure for a body of mass M. If r is the distance
between the axes and ICOM and I are the respective moments of inertia about
them, these moments are related by,

I = ICOM + Mr2

* Theorem of parallel axis is applicable for any type of rigid body whether it is a two
dimensional or three dimensional

3.2 Theorem of perpendicular axes
The theorem states that the moment of inertia of a plane lamina about an axis perpendicular to the plane
of the lamina is equal to the sum of the moments of inertia of the lamina about two axes perpendicular to
each other, in its own plane and intersecting each other, at the point where the perpendicular axis passes
through it.
Let x and y axes be chosen in the plane of the body and z-axis perpendicular, to this plane, three axes
being mutually perpendicular, then the theorem states that.

z
y

xO

xi

yi
ri

P

Iz = Ix + Iy

Important point in perpendicular axis theorem
(i) This theorem is applicable only for the plane bodies (two dimensional).
(ii) In theorem of perpendicular axes, all the three axes (x, y and z) intersect each other and this point
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may be any point on the plane of the body (it may even lie outside the body).
(iii) Intersection point may or may not be the centre of mass of the body.

4. TORQUE :
Torque represents the capability of a force to produce change in the rotational motion of the body

F



P

Q
r sin

Line of action 
of force

r

4.1  Torque about point :

Torque of force 

F  about a point  

  
  r F

where

F  = force applied

P = point of application of force
Q = point about which we want to calculate the torque.

r  = position vector of the point of application of force from the point about which we want to determine
the torque.

  rF sin = r F = rF

where  = angle between the direction of force and the position vector of P wrt. Q.

r  = perpendicular distance of line of action of force from point Q.

F  = force arm
SI unit to torque is Nm
Torque is a vector quantity and its direction is determined using right hand thumb rule.

5. BODY IS IN EQUILIBRIUM : -
We can say rigid body is in equillibrium when it is in
(a) Translational equilibrium

     i.e.

Fnet  0 , Fnet x = 0 and Fnet y = 0 and

(b) Rotational equillibrium

net  0 i.e., torque about any point is zero

Note :
(i) If net force on the body is zero then net torque of the forces may or may not be zero.
example.

A pair of forces each of same magnitude and acting in opposite direction on the rod.

A B
F
C

F
2

A F 2 
(2) If net force on the body is zero then torque of the forces about each and every point is same

 about B B F  +F

B F 2 
  about C C F 2 

6. RELATION BETWEEN TORQUE AND ANGULAR ACCELERATION
The angular acceleration of a rigid body is directly proportional to the sum of the torque components along
the axis of rotation. The proportionality constant is the inverse of the moment of inertia about that axis,
or

I




Thus, for a rigid body we have the rotational analog of Newton's second law ;
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 I ...(iii)
Following two points are important regarding the above equation.
(i) The above equation is valid only for rigid bodies. If the body is not rigid like a rotating tank of water, the
angular acceleration  is different for different particles.
(ii) The sum  in the above equation includes only the torques of the external forces, because all the
internal torques add to zero.

7. ANGULAR MOMENTUM
7.1 Angular momentum of a particle about a point.

  
L r P   L = r p sin 

| |

L r P 

| |

L P r 

Where

P  = momentum of partilcle

Psin



Pcos


P


r

O

r  =  position of vector of particle with respect to point about which
       angular momentum is to be calculated.

 =  angle between vectors 
 
r p&

r  = perpendicular distance of line of motion of particle   from point O.

P  = perpendicular component of momentum.
SI unit of angular momentum is kgm2/sec.

7.2 Angular Momentum of a rigid body rotating about a fixed axis
Suppose a particle P of mass m is going in a circle of radius r and at some instant the speed of the particle
is v. For finding the angular momentum of the particle about the axis of rotation, the origin may be chosen

anywhere on the axis. We choose it at the centre of the circle. In this case r
  and P

  are perpendicular

to each other and r P




 is along the axis. Thus, component of r P




 along the axis is mvr itself. The
angular momentum of the whole rigid body about AB is the sum of components of all particles, i.e.,

L = m r vi i i
i


Here,  vi = ri 

 L = m ri i i
i

2   or L =  m ri i
i

2
or L = I
Here, I is the moment of inertia of the rigid body about AB.

Note : Angular momentum about axis is the component of I

  along the axis. In most of the cases angular

momentum about axis is I.

8. CONSERVATION OF ANGULAR MOMENTUM :

The time rate of change of angular momentum of a particle about some referenence point in an inertial
frame of reference is equal to the net torques acting on it.

or
dt

Ld
net





 ....(i)

Now, suppose that 0


net , then dL

dt


 0 , so that L


 = constant.

"When the resultant external torque acting on a system is zero, the total vector angular momentum of the
system remains constant. This is the principle of the conservation of angular momentum.
For a rigid body rotating about an axis (the z-axis, say) that is fixed in an inertial reference frame, we
have

Lz = I
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It is possible for the moment of inertia I of a rotating body to change by rearrangement of its parts. If no
net external torque acts, then Lz must remains constant and if I does change, there must be a compensating
change in . The principle of conservation of angular momentum in this case is expressed.
I = constant.

9. ANGULAR IMPULSE

The angular impulse of a torque in a given time interval is defined as 


 dt
t

t

1

2

Here, 
  is the resultant torque acting on the body. Further, since







dL

dt
  





dt d L

or 


 dt
t

t

1

2

 = angular impulse = L L
 

2 1–

Thus, the angular impulse of the resultant torque is equal to the change in angular momentum. Let us take
few examples based on the angular impulse.

9.2 Kinetic Energy of a Rolling Body
If a body of mass M is rolling on a plane such that velocity of its centre of mass is V and its angular speed
is , its kinetic energy is given by

KE = 
1

2

1

2
2 2Mv I 

I is moment of inertia of body about axis passing through centre of mass.
In case of rolling without slipping.

KE = 
1

2
2 2M R  + 

1

2
2I   [ v = R]

  
1

2
2 2MR I  = 

1

2
2Ic 

Ic is moment of inertia of the body about the axis passing through point of contact.

10.CENTRE OF MASS :
Every physical system has associated with it a certain point whose motion characterises the motion of
the whole system. When the system moves under some external forces, then this point moves as if the
entire mass of the system is concentrated at this point and also the external force is applied at this point
for translational motion. This point is called the centre of mass of the system.

10.1 Centre of Mass of a System of ‘N’ Discrete Particles :
Consider a system of N point masses m1, m2, m3, .................... mn whose position vectors from origin O

are given by 
  
r r r1 2 3, , .............. 


rn  respectively. Then the position vector of the centre of mass C of the

system is given by.

   
r

m r m r m r

m m mcm
n n

n


  
  

1 1 2 2

1 2

...........

.........
 ; 




r

m r

m
cm

i i
i

n

i
i

n
 






1

1

  



n

1i
iicm rm

M

1
r


    

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.
.

..
.

.
. ..

.

.
.

..
.

.
. ..

.

.
.

..

.

.

.
. ..

.
.
.

.

..
.

.
. ..

.

.
.

.

.

.

.

.

.
. ..

.

.
.

.

.

.
.

.
. ..

.

.

.

.

.

.

.

Y

O x

 r cm


r1

m1 C m2

mn
rn


r2

where, m ri i


 is called the moment of mass of particle with respect to origin.

M mi
i

n

















1

 is the total mass of the system.

Further, r x i y j z ki i i i


     and r x i y j z kCOM COM COM COM


    

So, the cartesian co-ordinates of the COM will be
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xCOM = 
m x m x m x

m m m
n n

n

1 1 2 2

1 2

  
 


......

....... 






n

1i
i

n

1i
ii

m

xm

or xCOM = 

m x

M

i i
i

n




1

Similarly,    yCOM =   

m y

M

i i
i

n




1 and
M

zm

z

n

1i
ii

COM




Note :

• If the origin is taken at the centre of mass then m ri
i

n

i



1


 = 0. hence, the COM is the point about which the

sum of “mass moments” of the system is zero.

• If we change the origin then 
  
r r r1 2 3, , .......  changes. So 


rcm  also changes but exact location of center of

mass does not change.

10.2 Position of COM of two particles : -
Consider two particles of masses m1 and m2 separated by a distance l as shown in figure.

m1 C m2

l
Let us assume that m1 is placed at origin and m2 is placed at position (l, 0) and the distance of centre of
mass from m1 & m2 is r1 & r2 respectively.

So xCOM = 
m x m x

m m
1 1 2 2

1 2




r1 = 
0 2

1 2



m

m m

l
= 

m

m m
2

1 2

l

 ...(1)

(0,0) m1

r1 r2C

l
m2

r2 = l
l

–
m

m m
2

1 2
 = 

m

m m
1

1 2

l

 ...(2)

From the above discussion, we see that

r1 = r2 = 
2

l
 if m1 = m2, i.e., COM lies midway between the two particles of equal masses.

Similarly, r1 > r2 if m1 < m2 and r1 < r2 if m2 < m1 i.e., COM is nearer to the particle having larger mass.
From equation (1) & (2)
m1r1 = m2r2 ...(3)
Centre of mass of two particle system lie on the line joining the centre of mass of two particle system.
For continuous mass distribution the centre of mass can be located by replacing summation sign with an
integral sign. Proper limits for the integral are chosen according to the situation

x
xdm

dm
y

ydm

dm
z

zdm

dm
cm cm cm  








, , ...(i)

dm  = M (mass of the body)

here x,y,z in the numerator of the eq. (i) is the coordinate of the centre of mass of the dm mass.


rcm  = 

1

M


rdm

Note :
• If an object has symmetric mass distribution about x axis then y coordinate of COM is zero and vice-versa
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(a) Centre of Mass of a Uniform Rod
Suppose a rod of mass M and length L is lying along the x-axis with its one end at x = 0 and the other at

x = L. Mass per unit length of the rod  = 
M

L
Hence, dm, (the mass of the element dx situated at x = x is) =  dx
The coordinates of the element dx are (x, 0, 0). Therefore, x-coordinate of COM of the rod will be

dx

x=x x=Lx=0

xCOM = 




L

0

L

0

dm

dmx

= 
 








L

0

L

0

dx

dx)x(

 = 
1

20L
xdx

LL


The y-coordinate of COM is

yCOM = 
ydm

dm




 =  0

Similarly,  zCOM = 0

i.e., the coordinates of COM of the rod are L

2
0 0, ,







, i.e, it lies at the centre of the rod.

\(c) Centre of mass of Semicircular Disc :
Figure shows the half disc of mass M and radius R. Here, we are only required to find the y-coordinate of
the centre of mass of this disc as centre of mass will be located on its half vertical diameter. Here to find
ycm, we consider a small elemental ring of mass dm of radius r on the disc (disc can be considered to be
made up such thin rings of increasing radii) which will be integrated from 0 to R. Here dm is given as

drrdm 
where  is the mass density of the semi circular disc.

 = 22 R

M2

2/R

M






ycm

R

Y

X X

ycm

Y

dr

r

R

Now the y-coordinate of the element is taken as 

r2

, (as in previous section, we have derived that the

centre of mass of a semi circular ring is concentrated at 
2R


)






R

0

R

0
cm

dm

y.dm

y

Here y is the position COM of dm mass.

Here ycm is given as  










R

0

R

0
cm

rdr

r2
dm

y   drr
R

4 2
R

0
2     y

R
cm 

4

3
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(d) Centre of mass of a Hollow Hemisphere :
A hollow hemisphere of mass M and radius R. Now we consider an elemental circular strip of angular width
d at an angular distance  from the base of the hemisphere. This strip will have an area.

dS R Rd 2  cos

Y

X

ycm

R
X

Rd

R

Y

Rcos

Its mass dm is given as  RdcosR2dm

Here  is the mass density of a hollow hemisphere

= 
M

R2 2
Here y-coordinate of this strip of mass dm can be taken as R sin. Now we can obtain the centre of mass
of the system as.











2/

0

2

0
cm

dm

sinRdm

y
  

 

 











2/

0

2

2

0

2

dcosR2

sinRdcosR2

    R dsin cos  



0

2

 y
R

cm 
2

11.MOTION OF CENTRE OF MASS AND CONSERVATION OF MOMENTUM: -
The position of centre of mass is given by

.......mmm

........rmrmrm
r

321

332211
COM














   ....(1)

Here m1, m2, m3 ..... are the mass in the system and 
  
r r r1 2 3, , .........  is the corresponding position vector of

m1, m2, m3 respectively

11.1Velocity of C.O.M of system :
To find the velocity of centre of mass we differentiate equation (1) with respect to time

dr

dt

m
dr

dt
m

dr

dt
m

dr

dt
m m m

com


  


  

  

1
1

2
2

3
3

1 2 3

.......

.........

  
.........mmm

.......
dt

rd
m

dt

rd
m

dt

rd
m

V
321

3
3

2
2

1
1

com 







...mmm

......vmvmvm
V

321

332211
com 





...(2)

11.2 Acceleration of centre of mass of the system : -
To find the acceleration of C.O.M we differentiate equation (2)

 dV

dt

m
dv

dt
m

dv

dt
m

dv

dt
m m m

com


  


  

  

1
1

2
2

3
3

1 2 3

......

........

   
a

m a m a m a

m m mcom 
  
  

1 1 2 2 3 3

1 2 3

......

........ ...(3)
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Now (m1 + m2 + m3) 

acom  = m a m a m a1 1 2 2 3 3

  
  ......

   
F F F Fnet system net net net( ) ........   1 2 3

The internal forces which the particles exert on one another play absolutely no role in the motion of the
centre of mass.

12. IMPULSE :
Impulse of a force 


F  acting on a body for the time interval t = t1 to t = t2 is defined as

 
I =

t

t

1

2

Fdt  
 
I = F dt

 m
dv

dt
dt


  mdv



   
I = m(v2   v P1)  change in momentum due to force 


F

Also
  
IRe

t

t
=

1

2

F dt PsRe  (impulse - momentum theorem)

Note :
* Impulse applied to an object in a given time interval can also be calculated from the area under force time

(F-t) graph in the same time interval.

12.1 Instantaneous Impulse :
There are many cases when a force acts for such a short time that the effect is instantaneous, e.g., a
bat striking a ball. In such cases, although the magnitude of the force and the time for which it acts may
each be unknown but the value of their product (i.e., impulse) can be known by measuring the initial and
final momentum. Thus, we can write.

    
I = F dt   P P Pf i

Important Points :
(1) It is a vector quantity. (2) Dimensions = [MLT–1]
(3) SI unit = kg m/s (4) Direction is along change in momentum.

(5) Magnitude is equal to area under the F-t. graph. (6) 
   
I = F dt dt  F F tav av 

(7)  It is not a property of a particle,  but it is a measure of the degree to which an external force changes
the momentum of the particle.

13. COEFFICIENT OF RESTITUTION (e)

The coefficient of restitution is defined as the ratio of the impulses of reformation and deformation of
either body.

e = 
Im

Im

pulse of reformation

pulse of deformation  = 

F dt

F dt

r

d


  contact of point of approach ofVelocity 

contact of point of separation of Velocity
e 

Example for calculation of e :
Two smooth balls A and B approaching each other such that their centres are moving along line CD in
absence of external impulsive force. The velocities of A and B just before collision be u1 and u2 respectively.
The velocities of A and B just after collision be v1 and v2 respectively.

C
A B

D

u1
u2

Just Before collision

u >u1 2

          
C

A B
D

v1
v2

Just After collision

v > v2 1

e = 
21

12

u–u

v–v
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Note : Coefficient of restitution is a factor between two colliding bodies which is depends on the material of
the body but independent of shape.
We can say e is a factor which relates deformation and reformation of the body.

1e0 
13.1 Line of Motion

The line passing through the centre of the body along the direction of resultant velocity.

13.2 Line of Impact
The line passing through the common normal to the surfaces in contact during impact is called line of
impact. The force during collision acts along this line on both the bodies.
Direction of Line of impact  can be determined by :
(a) Geometry of colliding objects like spheres, discs, wedge etc.
(b) Direction of change of momentum.
If one particle is stationary before the collision then the line of impact will be along its motion after
collision.
Examples of line of impact
(i) Two balls A and B are approaching each other such that their centres are moving along line CD.

C D

Line of impact and 
line of motion

A B

(ii) Two balls A and B are approaching each other such that their centre are moving along dotted lines as
shown in figure.

D

A

B Line of motion 
    of ball A

Line of impact

Line of motion 
   of ball B

(iii) Ball is falling on a stationary wedge.

Line of impact

Line of motion of ball

Note : In previous discussed examples line of motion is same as line of impact. But in problems in which line
of impact and line of motion is different then e will be

e = 
velocity of seperation along line of impact

velocity of approach along line of impact

14. COLLISION OR IMPACT
Collision is an event in which an impulsive force acts between two or more bodies for a short time, which
results in change of their velocities.
Note :

• In a collision, particles may or may not come in physical contact.
• The duration of collision, t is negligible as compared to the usual time intervals of observation of motion.
• In a collision the effect of external non impulsive forces such as gravity are not taken into account as due

to small duration of collision (t) average impulsive force responsible for collision is much larger than
external forces acting on the system.



Page # 15ROTATIONAL MOTION & CENTER OF MASS

Power by: VISIONet Info Solution Pvt. Ltd  Website : www.edubull.com   Mob no. : +91-9350679141
1

The collision is in fact a redistribution of total momentum of the particle :
Thus law of conservation of linear momentum is indepensible in dealing with the phenomenon of collision
between particles. Consider a situation shown in figure.
Two balls of masses m1 and m2 are moving with velocities v1 and v2 (<v1) along the same straight line in a
smooth horizontal surface. Now let us see what happens during the collision between two particles.

m1 m2

v1 v2

figure (a)

    

N N

figure(b)
 

v1' v2 '

N
N

figure(c)

figure (a) : Balls of mass m1 is behind m2. Since v1 > v2, the balls will collide after some time.
figure (b) : During collision both the balls are a little bit deformed. Due to deformation two equal and
opposite normal forces act on both the balls. These forces decreases the velocity of m1 and increase the
velocity of m2
figure (c): Now velocity of ball m1 is decrease from v1 to v1 and velocity of ball m2 is increase from v2 to
v2. But still  v1 > v2 so both the ball are continuously deformed.
figure(d) : Contact surface of both the balls are deformed till the velocity of both the balls become equal.
So at maximum deformation velocities of both the blocks are equal

v1'' v2 ''

figure(d)

at maximum deformation v v1 2' ' ' '
figure(e) : Normal force is still in the direction shown in figure i.e. velocity of m1 is further decreased and
that of m2 increased. Now both the balls starts to regain their original shape and size.

v1' ' v2 ' '

figure(e)

N N v v2 1' ' ' '

figure (f) : These two forces redistributes their linear momentum in such a manner that both the blocks
are separated from one another, Velocity of ball m2 becomes more than the velocity of block m1 i.e.,
v2 > v1 v1 v2

v >v2 1

figure(f)

m1
m2

The collision is said to be elastic if both the blocks regain their original form, The collision is said to be
inelastic. If the deformation is permanent, and the blocks move together with same velocity after the
collision, the collision is said to be perfectly inelastic.

14.1 Classification of collisions
(a) On the basis of line of impact
(i)  Head-on collision : If the velocities of the colliding particles are along the same line before and after
the collision.
(ii) Oblique collision : If the velocities of the colliding particles are along different lines before and after
the  collision.
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(b) On the basis of energy :
(i)  Elastic collision :
(a) In an elastic collision, the colliding particles regain their shape and size completely after collision. i.e.,
no fraction of mechanical energy remains stored as deformation potential energy in the bodies.
(b) Thus, kinetic energy of system after collision is equal to kinetic energy of system before collision.
(c) e = 1
(d) Due to Fnet on the system is zero linear momentum remains conserved.
(ii) Inelastic collision :
(a)  In an inelastic collision, the colliding particles do not regain their shape and size completely after
collision.
(b)  Some fraction of mechanical energy is retained by the colliding particles in the form of deformation
potential energy. Thus, the kinetic energy of the particles no longer remains conserved.
(c)  However, in the absence of external forces, law of conservation of linear momentum still holds good.
(d)  (Energy loss)Perfectly Inelastic > (Energy loss)Partial Inelastic
(e)  0 < e < 1
(iii)  Perfectly Inelastic collision :
(i)   In this the colliding bodies do not return to their original shape and size after collision i.e. both the
particles stick together after collision and moving with same velocity
(ii) But due to Fnet of the system is zero linear momentum remains conserved.
(iii) Total energy is conserved.
(iv) Initial kinetic energy > Final K.E. Energy
(v) Loss in kinetic energy goes to the deformation potential energy
(vi) e = 0

14.2 Value of Velocities after collision :
Let us now find the velocities of two particles after collision if they collide directly and the coefficient of
restitution between them is given as e.

u1 u2

m1 m2

         (a)
Before Collision

u  > u1 2

v1 v2

m1 m2

         (b)
After Collision

v  > v2 1

e = 
v v

u u
2 1

1 2

–

–

  (u1 – u2)e = (v2 – v1) ...(i)
By momentum conservation
m1u1 + m2u2 = m1v1 + m2v2 ...(ii)
v2 = v1 + e(u1 – u2) ...(iii)
from above equation

v1 = 
21

1222211

mm

)u–e(umumum




...(iii)

v2 = 
21

2112211

mm

)u–e(umumum




...(iv)

Special cases :
1. If m1 >> m2 and u2 = 0 and u1 = u

and e = 1

m1

u

m2

m1 = m2
from eq. (iii) & (iv)

v1 = 
m u m u

m m
1 2

1 2

–

  = 
u m m

m m

( – )1 2

1 2

v u1 –~ , v2 = 
m u m u

m m
1 2

1 2




 = 
2 1

1 2

m u

m m
  ;  v2 = 2u

2. If m1 = m2 = m and e = 1 then
from eq. (iii) & (iv)
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v1 = 
m u u m u u

m

( ) ( – )1 2 2 1

2

 

v1 = u2
In this way  v2 = u1

i.e when two particles of equal mass collide elastically and the collision is head on, they exchange their
velocities.

14.3 Collision in two dimension (oblique) :
1. A pair of equal and opposite impulses act along common normal direction. Hence, linear momentum of
individual particles change along common normal direction. If mass of the colliding particles remain constant
during collision, then we can say that linear velocity of the individual particles change during collision in
this direction.
2. No component of impulse act along common tangent direction. Hence, linear momentum or linear
velocity of individual particles (if mass is constant) remain unchanged along this direction.
3. Net impulse on both the particles is zero during collision. Hence, net momentum of both the particles
remain conserved before and after collision in any direction.
4. Definition of coefficient of restitution can be applied along common normal direction, i.e., along common
normal direction we can apply Relative speed of separation = e (relative speed of approach)

14.4 Rocket Propulsion
Let m0 be the mass of the rocket at time  t = 0. m its mass at any time t and v its velocity at that
moment. Initially let us suppose that the velocity of the rocket is u.

u u

At    t = 0
       v = u
       m = m0

At    t = t
       m = m
       v = v

Exhaust velocity = vr

Further, let 






dm

dt  be the mass of the gas ejected per unit time and vr the exhaust velocity of the gases.

Usually 






dm

dt  and vr are kept constant throughout  the journey of the rocket. Now, let us write few

equations which can be used in the problems of rocket propulsion. At time t = t
1. Thrust force on the rocket

F v
dm

dtt r 



      (upwards)

2. Weight of the rocket
W = mg (downwards)

3.  Net force on the rocket
Fnet = Ft – W          (upwards)

or F v
dm

dt
mgnet r 





–
–

4.  Net acceleration of the rocket a
F

m


or
dv

dt

v

m

dm

dt
gr






 or dv v

dm

m
g dtr








or dv v
dm

m
g dtr

u

v

m

m t



  

0 0
or v – u = vr In 

m

m
gt0






Thus, v = u – gt + vr In 
m

m
0



 ...(i)
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SOLVED EXAMPLE
Ex.1 Find the centre of mass of three particles at
the vertices of an equilateral triangle. The masses
of the particles are 100g, 150g, and 200g
respectively. Each side of the equilateral triangle
is 0.5m long.
Ans.

With the X and Y axes chosen as shown in Fig., the
coordinates of points O, A and B forming the equilateral

triangle are respectively (0,0), (0.5,0), (0.25,0.25 3 ).

Let the masses 100 g, 150g and 200g be located at
O, A and B be respectively. Then,
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mmm
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Ex.2 Find the centre of mass of a triangular lamina.
Ans. The lamina (LMN) may be subdivided into narrow
strips each parallel to the base (MN) as shown in Fig.
7.10

By symmetry each strip has its centre of mass at its
midpoint. If we join the midpoint ofall the strips we
get the median LP. The centre  of mass of the triangle
as a whole therefore, has to lie on the median LP.
Similarly, we can argue that it lies on the median MQ
and NR. This means the centre of mass lies on the
point of concurrence of the medians, i.e. on the
centroid G of the triangle.

Ex.3 Find the centre of mass of a uniform L-shaped
lamina (a thin flat plate) with dimensions as
shown. The mass of the lamina is 3 kg.
Ans. Choosing the X and Y axes as shown in Fig. we
have the coordinates of the vertices of the L-shaped
lamina as given in the figure. We can think of the L-
shape to consist of 3 squares each of length 1m. The
mass of each square is 1kg, since the lamina is uniform.
The centres of mass C1, C2 and C3 of the squares are,
by symmetry, their geometric centres and have
coordinates (1/2,1/2), (3/2,1/2), (1/2,3/2)
respectively. We take the masses of the squares to
be concentrated at these points. The centre of mass
of the whole L shape (X, Y) is the centre of mass of
these mass points.

Hence
 

m
6
5

kg)111(
mgk)2/1(1)2/3(1)2/1(1

X 

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

 
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6
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



The centre of mass of the L-shape lies on the line OD.

Ex.4 Find the scalar and vector products of two

vectors. a = 









^^^
k5j4i3  and b = 










^^^
k3ji2

Ans.
^ ^^^ ^^

aib=(3 i -4 j+5k)i(-2 i+ j-3k)

= –6 – 4 –15 = –25

a × b = 
^^^

^^^

k5ji7
312
543
kji






Note  a × b = –
^^^
k5ji7 

Ex.5 Show that moment of a couple does not
depend on the point about which you take the
moments.
Ans.

Consider a couple as shown in Fig. acting on a rigid
body. The forces F and -F act respectively at points
B and A. These points have position vectors r1 and r2

with respect to origin O. Let us take the moments of
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the forces about the origin. The moment of the couple
= sum of the moments of the two forces making the
couple
= r1 × (–F) + r2 × F = r2 × F – r1 × F = (r2–r1) × F
But r1 + AB = r2, and hence AB = r2 – r1. The moment
of the couple, therefore, is AB × F. Clearly this is
independent of the origin, the point about which we
took the moments of the forces.

Ex.6 A metal bar 70 cm long and 4.00 kg in mass
supported on two knife-edges placed 10 cm from
each end. A 6.00 kg weight is suspended at 30 cm
from one end. Find the reactions at the knife-
edges. (Assume the bar to be of uniform cross
section and homogeneous.)
Ans.

Figure shows the rod AB, the positions of the knife
edges K1 and K2 , the centre of gravity of the rod at
G and the suspended weight at P. The weight of the
rod W acts at its centre of gravity G. The rod is
uniform in cross section and homogeneous; hence G
is at the centre of the rod; AB = 70 cm. AG = 35 cm, AP
= 30 cm, PG = 5 cm, AK1= BK2 = 10 cm and K1G
= K2G = 25 cm. Also, W= weight of the rod = 4.00 kg
and W1= suspended weight = 6.00 kg; R1 and R2 are
the normal reactions of the support at the knife edges.
For translational equilibrium of the rod,

R1+R2 –W1 –W = 0 (i)
W1 and W act vertically down and R1 and R2 act
vertically up. For considering rotational equilibrium,
we take moments of the forces. A convenient point
to take moments about is G. The moments of R2 and
W1 are anticlockwise (+ve), whereas the moment of
R1 is clockwise (-ve). For rotational equilibrium, –R1

(K1G) + W1 (PG) + R2 (K2G) = 0 (ii) It is given that
W = 4.00g N and W1 = 6.00g N, where g = acceleration
due to gravity. We take g = 9.8 m/s2. With numerical
values inserted, from (i) R1 + R2 – 4.00g – 6.00g = 0
or R1 + R2 = 10.00g N (iii) = 98.00 N From
(ii) – 0.25 R1 + 0.05 W1 + 0.25 R2 = 0
or R2 – R1 = 1.2g N = 11.76 N (iv) From (iii) and
(iv), R1 = 54.88 N, R2 = 43.12 N
Thus the reactions of the support are about
55 N at K1 and 43 N at K2.

Ex.7 A 3m long ladder weighing 20
kg leans on a frictionless wall. Its
feet rest on the floor 1 m from the
wall as shown in Fig. Find the
reaction forces of the wall and the

floor.            

Ans. The ladder AB is 3 m long, its foot A is at distance
AC = 1 m from the wall. From Pythagoras theorem,
BC = 2 2  m. The forces on the ladder are its weight
W acting at its centre of gravity D, reaction forces F1

and F2 of the wall and the floor respectively. Force F1

is perpendicular to the wall, since the wall is
frictionless. Force F2 is resolved into two components,
the normal reaction N and the force of friction F.  that
F prevents the ladder from sliding away from the wall
and is therefore directed toward the wall. For
translational equilibrium, taking the forces in the
vertical direction, N – W = 0 (i) Taking the forces in
the horizontal direction, F – F1 = 0 (ii) For rotational
equilibrium, taking the moments of the forces about

A, 2 2  F1 – (1/2) W = 0 (iii)
Now W = 20 g = 20 × 9.8 N = 196.0 N
From (i) N = 196.0

From (iii) F1 =W 4 2  = 196.0/4 2  = 34.6N
From (ii) 1 F = F = 34.6 N

F2 = 22 NF  = 199.0 N
The force F2 makes an angle ? with the
horizontal,

tan = N F = 4 2   = tan–1(4 2 )  80º

Ex.8 What is the moment of inertia of a rod of
mass M, length l about an axis perpendicular to it
through one end?
Ans. For the rod of mass M and length l, I = M2/12.
Using the parallel axes theorem,
I’= I + Ma2 with a = /2 we get,

3
M

2
M

12
M'I

222 
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







We can check this independently since I is half the
moment of inertia of a rod of mass 2M and length 2l

about its midpoint, 
3

M
2
1

12
4

.M2'I
22 



Ex.9 What is the moment of inertia of a ring about
a tangent to the circle of the ring?
Ans.
The tangent to the ring in the plane of the ring is
parallel to one of the diameters of the ring. The
distance between these two parallel axes is R, the
radius of the ring. Using the parallel axes theorem,
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Exercise - I UNSOLVED PROBLEMS
Q.1 Give the location of the centre of mass of a

(i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each

of uniform mass density. Does the centre of mass

of a body necessarily lie inside the body ?

Q.2 In the HCl molecule, the separation between

the nuclei of the two atoms is about 1.27 Å (1 Å =

10-10 m). Find the approximate location of the CM

of the molecule, given that a chlorine atom is about

35.5 times as massive as a hydrogen atom and nearly

all the mass of an atom is concentrated in its

nucleus.

Q.3 A child sits stationary at one end of a long

trolley moving uniformly with a speed V on a smooth

horizontal floor. If the child gets up and runs about

on the trolley in any manner, what is the speed of

the CM of the (trolley + child) system ?

Q.4 Three mass points m1, m2 and m3 are located

at the vertices of an equilateral triangle of length

a. What is the moment of inertia of the system

about an axis along the altitude of the triangle

passing through m1 ?

Q.5 What is the moment of inertia of a uniform

circular disc of radius R and mass M about an axis

(i) passing through is centre and normal to the disc

; (ii) passing through a point on its edge and normal

to the disc ? The moment of inertia of the disc

about any of its diameters is given to be (1/4) MR2.

Q.6 A solid cylinder of mass 20 kg rotates about

its axis with angular speed 100 rad s–1. The radius

of the cylinder is 0.25 m. What is the kinetic energy

associated with the rotation of the cylinder ? What

is the magnitude of angular momentum of the

cylinder about its axis ?

Q.7 (A) A child stands at the centre of a turntable

with his two arms outstretched. The turntable is

set rotating with an angular speed of 40 rev/min.

How much is the angular speed of the child if he

folds his hands back and thereby reduces his

moment of inertia to 2/5 times the initial value ?

Assume that the turntable rotates without friction.

(b) Show that the child's new kinetic energy of

rotation is more than the initial kinetic energy of

rotation. How do you account for this increase in

kinetic energy ?

Q.8 A rope of negligible mass is wound round a

hollow cylinder of mass 3 kg and radius 40 cm. What

is the angular acceleration of the cylinder if the

rope is pulled with a force of 30 N ? What is the

linear acceleration of the rope ? Assume that there

is no slipping.

Q.9 A uniform solid cylinder of mass 5 kg and radius

30 cm, and free to rotate about its axis, receives

an angular impulse of 3 kg m s–1 initially followed by

a similar impulse after every 4 s. What is the angular

speed of the cylinder 30 s after the initial impulse ?

The cylinder is at rest initially.

Q.10 To maintain a rotor at a uniform angular speed

or 200 rad s–1, an engine needs to transmit a torque

of 180 N m. What is the power required by the

engine ?

(Note : uniform angular velocity in the absence of

friction implies zero torque. In particle, applied

torque is needed to counter frictional torque).

Assume that the engine is 100% efficient.

Q.11 Torques of equal magnitude are applied to a

hollow cylinder and a solid sphere, both having the

same mass and radius. The cylinder is free to rotate

about its standard axis of symmetry, and the sphere

is free to rotate about an axis passing through its

centre. Which of the two will acquire a greater

angular speed after a given time.

Q.12 Two discs of moments of inertia I1 and I2 about

their respective axes (normal to the disc and

passing through the centre), and rotating with

angular speeds 1 and 2 are brought into contact

face to face with their axes of rotation coincident.

(a) What is the angular speed of the two-disc

system ? (b) Show that the kinetic energy of the
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combined system is less than the sum of the initial

kinetic energies of the two discs. How do you

account for this loss in energy ? Take 1  2.

Q.13 A disc rotating about its axis with angular

speed 0 is placed lightly (without any translational

push) on a perfectly frictionless table. The radius

of the disc is R. Figure ? Will the disc roll in the

direction indicated ?

CR
2

A

B

0

Q.14 Explain why friction is necessary to make the

disc in figure roll in the direction indicated.

(a) Give the direction of frictional force at B, and

the sense of frictional torque, before perfect rolling

begins.

(b) What is the force of friction after perfect rolling

begins ?

Q.15 A solid disc and a ring, both of radius 10 cm

are placed on a horizontal table simultaneously, with

initial angular speed equal to 10  rad s–1. Which of

the two will start to roll earlier ? The co-efficient

of kinetic friction is K = 0.2.

Q.16 A cylinder of mass 10 kg and radius 15 cm is

rolling perfectly on a plane of inclination 30°. The

co-efficient of static friction s = 0.25.

(a) How much is the force of friction acting on the

cylinder ?

(b) What is the work done against friction during

rolling ?

(c) If the inclination  of the plane is increased, at

what value of  does the cylinder begin to skid, and

not roll perfectly ?

Q.17 A ring, a disc and a sphere, all of the same

radius and mass, roll down on an inclined plane from

the same height h. Which of the three reaches the

bottom (i) first, (ii) last ?

Q.18 A solid cylinder of mass 20 kg and radius 0.12

m rotating with initial angular speed of 125 rad s–1

is placed lightly (i.e. without any translational push)

on a horizontal table with co-efficient of kinetic

friction K = 0.15, between the cylinder and the

table.

(a) After how long does the cylinder start rolling ?

(b) What is the initial (i) translational energy, (ii)

rotational energy, and (iii) total energy of the

cylinder?

(c) Is the final total energy equal to the initial total

energy, (b) rotational energy, and (c) total energy

of the cylinder?

(d) Is the final total energy equal to the initial total

energy of motion of the cylinder? If not, where does

the difference of energy disappear?

(e) Account for the loss of total energy of motion

in the following way; find the work done by friction

on the body for its translational motion, and the

work done against friction by the body as regards

its rotational motion. Show that the net work done

by friction on the body is negative, equal in

magnitude of the loss of total energy computed in

(d) above.

Q.19 Read each statement below carefully, and

state, with reasons, if it is true or false :

(a) During rolling without slipping on a fixed inclined

surface, the force of friction acts in the same

direction as the direction of motion of the CM of

the body (only weight and contact force act).

(b) The instantaneous speed of the point of contact

during rolling without slipping on a fixed surface is

zero.

(c) The instantaneous acceleration of the point of

contact during rolling without slipping on a fixed

surface is zero.

(d) For  rolling without slipping on a fixed surface

motion, total work done by friction is zero.

(e) A wheel moving down a perfectly frictionless

fixed inclined plane will undergo rolling with slipping

(only weight and contact force act).


