

A. FIRST PRINCIPLE OF MATHEMATICAL INDUCTION

The proof of proposition by mathematical induction consists of the following three steps :

Step I : (Verification step) : Actual verification of the proposition for the starting value "i".

Step II : (Induction step): Assuming the proposition to be true for "k", $k \ge i$ and proving that it is true for the value (k + 1) which is next higher integer.

Step III : (Generalization step) : To combine the above two steps. Let p(n) be a statement involving the natural number n such that

(i) p (1) is true i.e. p(n) is true for n = 1. (ii) p(m + 1) is true, whenever p(m) is true i.e. p(m) is true \Rightarrow p(m + 1) is true.

Then p(n) is true for all natural numbers n.

B. SECOND PRINCIPLE OF MATHEMATICAL INDUCTION

The proof of proposition by mathematical induction consists of following steps :

Step I : (Verification step):Actual verification
of the proposition for the starting value i and (i +
1).

Step II : (Induction step) : Assuming the proposition to be true for k - 1 and k and then proving that it is true for the value k + 1; $k \ge i + 1$.

Step III : (generalization step) : Combining the above two steps. Let p(n) be a statement involving the natural number n such that

(i) p(1) is true i.e. p(n) is true for n = 1 and (ii) p(m + 1) is true, whenever p(n) is true for all n, where $i \le n \le m$. Then p(n) is true for all natural numbers. For a \neq

b. The expression $a^n - b^n$ is divisible by

(a) a + b, if n is even.

(b) a – b, if n is odd or even.

C. DIVISIBILITY PROBLEMS

To show that an expression is divisible by an integer (i) If a, p, n, r are positive integer, then first of all we write $a^{pn+r} = a^{pn}$. $a^r = (a^p)^n$. a^r .

(ii) If we have to show that the given expression is divisible by c.

Then express, $a^p = [1 + (a^p - 1)]$, if some power of $(a^p - 1)$ has c as a factor.

 $a^{p} = [2 + (a^{p} - 2), if some power of (a^{p} - 2) has c as a factor.$

 $a^{p} = [k + (a^{p} - k)]$, if some power of $(a^{p} - k)$ has c as a factor.

D. REVERSING TECHNIQUE

If a_0 , a_1 , a_2 , \dots , a_n are in A.P. then sum of the series $a_0C_0 + a_1C_1 + \dots + a_nC_n$ can be obtained by the reversing technique explained below.

Let $S = a_0C_0 + a_1C_1 + a_2C_2 + \dots + a_{n-1}C_{n-1} + a_nC_n \dots$ (i)

Using $C_r = C_{n-r}$ and reversing the order in which terms are written above, we obtain,

$$S = a_n C_0 + a_{n-1} C_1 + a_{n-2} C_2 + \dots + a_1 C_{n-1} + a_n C_n$$

....(ii)

Adding (i) and (ii) we get,

$$2S = (a_0 + a_n) C_0 + (a_1 + a_{n-1}) C_1 + (a_2 + a_{n-2}) C_2 + \dots + (a_{n-1} + a_1) C_{n-1} + (a_n + a_0) C_n$$

As $a_0, a_1, a_2, \dots, a_n$ are in A.P., we have
 $a_0 + a_n = a_1 + a_{n-1} = a_2 + a_{n-2} = \dots$
So that, $2S = (a_0 + a_n) (C_0 + C_1 + C_2 + \dots + C_n) = (a_0 + a_n) 2^n \Rightarrow S = \frac{1}{2} (a_0 + a_n) 2^n = (a_0 + a_n) 2^{n-1}$

SOLVED PROBLEMS

- **Ex.1** By mathematical Induction prove that $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1} \quad \forall \quad n \in \mathbb{N}.$
- Sol. We are to prove that

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1} \qquad \dots (1)$$

For n = 1, L.H.S. =
$$\frac{1}{1.3} = \frac{1}{3}$$

- R.H.S = $\frac{1}{2+1} = \frac{1}{3}$
- L.H.S. = R.H.S.

:. Result that result (1) it true for n = 1Assume that result (1) is true for n = m

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2m-1)(2m+1)} = \frac{m}{2m+1} \qquad \dots (2)$$

Adding next term i.e.
$$\frac{1}{(2m+1)(2m+3)}$$
 on

both sides of (2), we get

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2m-1)(2m+1)} + \frac{1}{(2m+1)(2m+3)}$$

$$= \frac{m}{2m+1} + \frac{1}{(2m+1)(2m+3)} = \frac{1}{(2m+1)} \left[m + \frac{1}{2m+3} \right]$$

$$= \frac{1}{(2m+1)} \left[\frac{2m^2 + 3m + 1}{2m+3} \right] = \frac{2m^2 + 3m + 1}{(2m+1)(2m+3)}$$

$$= \frac{2m(m+1)+1(m+1)}{(2m+1)(2m+3)} = \frac{(m+1)(2m+1)}{(2m+1)(2m+3)}$$

$$= \frac{m+1}{2m+3} = \frac{m+1}{2(m+1)+1} \qquad \dots (3)$$

Comparing (3) with (1) we see that the result is true for n = m + 1Hence by the principle of Mathematical Induction, result (1) is true $\forall n \in N$.

- **Ex.2** Use principle of Mathematical induction to prove that $1.3+2.4+3.5+ \dots + n(n+2)$ = $\frac{n(n+1)(2n+7)}{6}$ **Sol.** We are to prove that
 - 1.3+2.4+3.5+...+ n(n+2) = $\frac{n(n+1)(2n+7)}{6}$...(1) For n = 1, L.H.S. = 1.3 = 3 R.H.S = $\frac{1(2)(9)}{6} = \frac{18}{6} = 3$ L.H.S. = R.H.S ∴ Result (1) is true for n = 1 Assume that (1) is true for n = m 1.3 + 2.4 + 3.5 + + m(m+2) = $\frac{m(m+1)(2m+7)}{6}$...(2)

Adding next term i.e. (m + 1)(m + 3) on both sides of (2), we get $1.3+2.4+3.5+ \dots +m(m+2)+(m+1)(m+3)$

$$\frac{m(m+1)(2m+7)}{6}$$
 + (m+1)(m+3)

$$= (m+1) \left[\frac{m(2m+7)}{6} + m + 3 \right]$$
$$= \frac{(m+1)(2m^2 + 7m + 6m + 18)}{6}$$

$$\frac{(m+1)(2m^2+7m+6m+18}{6}$$

$$= \frac{(m+1)(m+2)(2m+9)}{6}$$

$$= \frac{(m+1)(m+1+1)(2(m+1)+7)}{6} \dots (3)$$

Comaring (3) with (1), we see that the result is true for = m + 1Hence by the principle of Mathematical Induction result (1) is true $\forall n \in N$.

Ex.3 Use method of Induction to prove that $(1+x)^n \ge 1 + nx$ for x > -1 and for all natural number n. **Sol.** We are to prove that $(1+x)^n \ge 1+nx$ for $n \ge 1$ and x > -1 ...(1) For n=1, (1) becomes $1+x \ge 1+x$ which is always true \therefore result (1) is true for n = m(2)

Now $x > -1 \Rightarrow 1 + x > 0$(2) \therefore Multiplying both sides of (2) by 1 + x >0, we get $(1+x)^{m+1} \ge (1+mx) (1+m)$ $\geq 1 + x + mx + mx^2$ \geq 1+ (m+1) m +mx² $(1+x)^{m+1} \ge 1+ (m+1) x [:. kx^2 \ge 0]$ Comparing this result with (1), we see that result (1) is true for n = m + 1 \therefore By method of Induction, result (1) is true for all natural numbers n. **Ex.4** If x and y any two distinct integers then show that $x^{n}-y^{n}$ is integral multiple of x-y. **Sol.** We want to show that $x^n - y^n$ is an integral multiple of x-y. In other words, we want to show that $x^n - y^n$ is divisible by $x - y \neq 0$ Let $P(n)=n^n-y^n$ P(1) = x - y which is divisible by x - y \therefore result is true for n=1 Assume that result is true for n=m $P(m)=x^{m}-y^{m}$ is divisible by x-y*.*.. Sol. Let $x^m - y^m = \ell (x - y)$(1) where ℓ is an integer Now $P(m+1)=x^{m+1}-y^{m+1}=x^{m+1}-yx^{m}+yx^{m}+yx^{m+1}$ $= x^{m}(x-y)+y(x^{m}-y^{m})$ $= x^{m}(x-y)+y.\ell(x-y)$ $= (x-y)(x^m + \ell y)$ which is divisible by x - y \therefore result is true for n = m + 1 \therefore It the result is true for n = m, then it is also true for n = m + 1But the result is ture for n = 1 \therefore by the method of Induction, the result is true for all $n \in N$. For n = 1R.H.S = $\frac{1(1+1)}{2} = \frac{1 \times 2}{2} = 1$ L.H.S. = 1 \therefore L.H.S. = R.H.S.

Ex.5 Use the principle of Mathematical Induction to prove that $10^{n}+3.4^{n+2}+5$ divisible by $9 \forall n \in N$. **Sol.** Let $P(n) = 10^n + 3.4^{n+2} + 5$ \therefore P(1) = 10¹ + 3 × 4³ + 5 = 10 + 192 + 5 = 207= 9×23 , which is divisible by 9. \therefore result it true for n=1 Assume that result is true for n=m. $P(m) = 10^{m} + 3.4^{m+2} + 5$ is divisible by 9. ÷ Let $10^{m}+3.4^{m+2}+5=9l$, where l is an integer $10^{m} = 9/-3.4^{m+2}-5$ ÷ $P(m+1) = 10^{m+1} + 3.4^{m+1+2} + 5$ $= 10^{m}.10 + 3.4^{m+2}.4^{1} + 5$ $= (9/ - 3.4^{m+2} - 5).10 + 3.4^{m+2}12 + 5$ $= 90 / - 18 \times 4^{m+2} - 45$ = $9(10/-2.4^{m+2}-5)$ which is divisible by 9 result is true for n=m+1 : by Mathematical Induction, result is true for all n∈N. **Ex.6** Use the method of Induction to prove that n(n+1)(n+2) is a multiple of $6 \forall n \in \mathbb{N}$. Let P(n) = n(n+1)(n+2)· . p(1) = 1(1+1)(1+2) = 6 which is a multiple of 6 \therefore result is true for n=1 Assume that result is true for n=m. P(m)=m(m+1)(m+2) is a multiple of 6. ÷. Let m(m + 1) (m + 2) = 6/....(1) where *I* is an integer. p(m+1) = (m+1)(m+2)(m+3)= (m+1)(m+2)(m)+(m+1)(m+2)(3)= m(m+1)(m+2) + 3(m+1)(m+2)Now m+1 and m+2 are two consectutive integers and therefore, their product (m+1) (m + 2) is even. Let (k + 1) (m + 2) = 2m....(2) P(m+1) = 6/+3(2k) [: of (1) and (2)] *:*. \therefore P(m+1) = 6(*l*+k), which is a multiple of 6. \therefore Result is true for n = m +1 : By method of Induction the result is true for all $n \in N$.

EXERCISE	
Q.1 $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$	Q.23 n(n+1) (n+2) is a multiple of 6. Q.24 n(n+1) (2n+1) is divisible by 6.
Q.2 1 + 2 + 3 + + n = $\frac{n(n+1)}{2}$	Q.25 $2^{3n} - 1$ is divisible by 7.
Q.3 1 + 4 + 7 + + $(3n-2) = \frac{1}{2}n(3n-1)$	Q.26 $12^{n} + 2.5^{n-1}$ is divisible by 7. Q.27 $3^{2n} - 1$ is divisible by 8.
Q.4 $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$	Q.28 4 ⁿ + 15n - 1 is divisible by 9.
Q.5 1 + 3 + 5 + + $(2n - 1) = n^2$ Q.6 1.2.3 + 2.3.4 + 3.4.5 + + $n(n+1)(n+2)$	Q.29 10^n + 3.4^{n+2} + 5 is divisible by 9. Q.30 The sum of the cubes of three consecutive
$= \frac{n}{4}(n+1)(n+2)(n+3)$	natural numbers is divisible by 9. Q.31 $n^3 + (n+1)^3 + (n+2)^3$ is divisible by 9.
Q.7 1.2 + 2.3 + 3.4 + + n(n+1) = $\frac{1}{3}$ n(n+1)(n+2)	Q.32 10^{2n-1} + 1 is divisible 11. Q.33 12^{n} + 25^{n-1} is divisible by 13.
Q.8 1.3 + 3.5 + 5.7 + + (2n-1) (2n+1)	Q.34 15^{2n-1} + 1 is divisible by 16. Q.35 5^{2n-1} + 1 is divisible by 24.
$= \frac{n}{3}(4n^2 + 6n - 1)$	Q.36 $2.7^{n} + 3.5^{n} - 5$ is divisible by 24. Q.37 $n(n^{2} - 1)$ is divisible by 24. When n is an odd
Q.9 2 + 3.2 + 4.2 ² + + (n+1) 2 ⁿ⁻¹ = n.2 ⁿ Q.10 $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$	Q.38 7^{2n} + 2^{3n-3} , 3^{n-1} is divisible by 25.
Q.11 $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$	Q.39 6^{n-2} + 7^{2n+1} is divisible by 43.
Q.12 $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$	Q.40 7^{2n} - 1 is divisible by 48. Q.41 3^{2n+2} - 8n - 9 is divisible by 64.
n	Q.42 $11^{n+2} + 12^{2n+1}$ is divisible by 133. Q.43 $5^{2n+2} - 24n - 25$ is divisible by 578.
Q.13 $\frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{1}{3n+1}$ Q.14 1 + 2 + 3 + + n < $\frac{1}{8}$ (2n+1) ²	Q.44 $x^n - y^n$ is divisible by $x - y$.
Q.15 a + (a +d) + (a + 2d) ++ [a + (n-1) d]	Q.45 $x^{n}-y^{n}$ is divisible by x+y when n is even. Q.46 $p^{n+1} + (p+1)^{2n-1}$ is divisible by $p^{2}+p+1$ where
$=\frac{n}{2}[2a + (n - 1) d]$	p is a natural number. Q.47 $(\cos\theta + i \sin\theta)^n = \cos n\theta + i \sin n\theta$.
Q.16 $(1+x)^n > 1 + nx$, for $n > 1$, $x > -1$ Q.17 a + ar + ar ² + + ar ⁿ⁻¹ = $\frac{a(r^n - 1)}{r - 1}$, $r \neq 1$ Q.18 n < 2 ⁿ	Q.48 Show that if statement P (n) : $2 + 4 + 6$ + $2n = n(n + 1) + 2$ is true for $n = k$ then is also true for $n = k + 1$. Can we apply principle of mathematical induction?
Q.19 $3^n > 2^n$	Q.49 Prove that $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is a natural number

Q.20 For each natural number, n(n+1) is a multiple of 2.

Q.21
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{n}} > 2\left(\sqrt{n+1} - 1\right).$$

Q.22 Sum, $S_n = n^3 + 3n^2 + 5n + 3$ is divisible by 3 for any positive integer n.

mber for $n \in \mathbb{N}$.

Q.50 Prove that $1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3}$ $\frac{1}{1+2+3....+n} = \frac{2n}{n+1}.$