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Electrostatic Potential and Capacitance

ELECTRIC POTENTIAL AND
POTENTIAL ENERGY

Line integral of 

E

The line integral of electric fields is defined as the
integral



 d.E
B

A

The value of line integral depends only on the position
of points A and B, and is independent of the path
between A and B



   d.Ed.E
A

B

B

A

Line integral for a closed path is zero

0d.E 


  0EV 


such electric fields are called conservative fields.

Electric potential

Electric potential and potential energy are defined
only for conservative fields.

Definition in terms of work done.
Potential at any point A is equal to the amount of
work done (by external agent against electric field)
in bringing a unit positive charge from infinity to that
point.

q
WV A

A


Unit of potential (V) = J/C or volt
Potential at a point is said to be one volt if the amount
of work done in bringing one coulomb of positive
charge from infinity to that point is one joule.
Since work and charge, both are scalars, the electric
potential is a scalar quantity.

The dimensions of electric potential are 
TA

TML 22 



or [V] = ML2T–3A–1

Potential difference
Potential difference between two points f (final and
i (initial) is defined as equal to the amount of work
done (by external agent) in moving a unit positive
charge from point i (initial) to f (final)

q
WVV if

if 
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If work done in carrying a unit positive charge from
point 1 to point 2 is one joule then the potential
difference V2 – V1 is said to be one volt.
Potential difference may be positive or negative.

The work done against electrical forces in
transporting a charge q from point i (potential Vi)
to point f (potential V f) is W  = qV where
V = V f – V i.

Relation between E and electric potential V

V = Vf – Vi = – 

 .E

In one dimensions

dr
dVE     ......(1)

drEV     ......(2)

[If electric potential is known, electric field can be
determined from eq. (1) and if E is known, V can
be determined from (2)]

In general VE 


Electric field at any point is equal to negative of
potential gradient at that point.
The electric field always points from higher potential
to lower potential (see fig.)

A positive charge always moves from higher potential
to lower potential.

A negative charge always moves from lower potential
to higher potential.

Electric potential due to point charges

One point charge r
q

4
1V

0


Many point charges

Potential is a scalar quantity and adds like scalers.
Thus potential at point P (see fig.) due to charges
q1, q2, –q3 is equal to (algebraic) sum of potentials
due to individual charges.

V = V1 + V2 + V3 + .....















 .....

r
q

r
q

r
q

4
1V

3

3

2

2

1

1

0

Potential due to a charged spherical shell

The charge resides on the shell surface. The potential
at P1, outside point, is

r
q.

4
1V

0


The potential at P2,
surface point is

R
q.

4
1V

0


The potential at P3, inside point is

surfaceVV  R
q

4
1V

0


If is constant inside the shell (same at all points inside
the shell)
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Potential due to a charged conducting sphere
The charge always resides on the surface of a
conducting sphere. Therefore, as far as electric field
and potential, outside, at the surface and inside points
are concerned the expressions are identical to those
obtained for the spherical shell. Thus for points,

Outside the sphere r
Q

4
1V

0


At the surface of sphere R
Q

4
1V

0


Inside the sphere        V= Vsurface = R
Q

4
1

0

The potential at the points inside a conducting sphere
is constant. (The electric field inside is zero)
Potential due to a charged non-conducting
sphere
The charge resides inside the sphere also, uniformly
distributed over entire volume. For outside points
it acts as a point charge located at O. The potential
at points

Outside (e.g. point P3) r
Q

4
1V

0


At the surface (e.g. point P2) R
Q

4
1V

0


Inside the sphere (e.g. point P1)

3

22

0 R2
)rR3(Q

4
1V 




The potential at the centre of the sphere is Vcentre

= 
R

kQ
2
3 . This is 1.5 times the potential at the surface

of the sphere Vsurface = kQ/R

Equipotential surface
A surface on which the potential is constant is called
an equipotential surface. (A curve on which the
potential is constant is called equipotential curve)

The electric field lines are perpendicular to
equipotential surface (every where)
Since E = 0 inside a conductor, the entire conductor
is at a constant potential.
For a  point charge q and spherical charge
distributions, the equipotential surfaces are spherical
fig.a & b  dotted lines)
For a uniform field equipotential surface is plane (see
fig. c) dotted lines)
For a dipole, V = 0 surface is the equatorial plane.
Other equipotential surfaces are curved.
Thus, in general equipotential surface can be of any
shape.
When a charge is moved on an equipotential
surfaces, work done is zero

Ex.25 A uniform electric field of magnitude E0 and
directed along positive x-axis exist in a certain region
of space. If at x = 0, then potential V is zero, then
what is the potential at x = +x0 ?
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Sol. For a uniform field V = –Er. In this case V =

    V  – 0, r = x0 – 0, and E = E0.
Thus V – 0 = – E (x0 – 0)
or    V = –Ex0

(Note the negative sign. As one moves along the
direction of electric field, the potential falls)

Ex.26 Electric field intensity is given by the relation
E = 100/x2 where x is in meters. Find potential
difference between the points x = 10 m and
x = 20 m.

Sol. 20
10

12
20

10

x

x

]x[100dxx100EdxV
2

1

  

.volt5
20
1

10
1100 




 

Ex.27 Infinite charges of magnitude q are placed at
coordinates x = 1m, 2m, 8m respectively along the
x-axis. Find the value of potential at x = 0 due to
these charges.

Sol. Resultant potential at x = 0






  ....
8
1

4
1

2
1

1
1kqV  = kq 





 2/11

1

  = 2kq  [Sum of above G.P., S. = 
r1

a


]

Ex.28 In the above question if alternate charges are
positive and negative then find potential x = 0.

Sol. 




  ....
8
1

4
1

2
1

1
1kqV kq

3
2

2/11
1kq 









Ex.29 A metallic charged sphere of radius r. V is the
potential difference between point A on the surface
and point P distance 4r from the centre of the sphere.
Then the electric field at a point which is at a distance
4r from the centre of the sphere will be -

Sol. V = VA – VP                  

r4
kq

r
kq


r4

kq3


Therefore for point P

r12
V

)r4(
kqE 2 

Ex.30 A ring of radius R has a charge +q. A charge q0

is freed from the distance R3  on its axis, when it
reaches to the centre of the ring its kinetic energy
becomes.

Sol.
04

1V



22 rR

q



At r = 3 R ,   V1 = 
R2

kq

At r = 0,         
R
kqV2 

KE = (V2 – V1) q0 R2
kqq0

Ex.31 A solid spherical conductor carries a charge Q.
It is surrounded by a concentric uncharged spherical
shell. The potential difference between the surface
of solid sphere and the shell in V. If a charge of –
3Q is given to the shell. Then the new potential
difference between the above two points will be -

Sol. Initial potential difference before charge is given to
the shell

V
b
1

a
1

4
QVV

0
BA 




 




(ii) Final potential difference after the charge –3Q
is supplied to the shell

0
A 4

1'V


 






 
b
Q3

a
Q

0
B 4

1'V


 






 
b
Q3

b
Q

 V
b
1

a
1

4
Q'V'V

0
BA 



 



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Ex.32 In the following diagram the variation of potential

with distance r is represented. The intensity of electric
field in V/m at r = 3m will be

Sol. Because at r = 3m potential V = 5 volt = const.

 0
dr
dVE   V/m

Ex.33 In the above example the value of E in V/m at
  r = 6m will be.

Sol. At r2 = 7m, V2 = – 2 volt
at r1 = 5m, V1 = 4 volt

)rr(
)VV(E

12

12




  = – ]57[
]42[




1
2
2
  V/m

Ex.34 Electric potential for a point (x, y, z) is given by
V = 4x2 volt. Electric field at point (1, 0, 2) is -

Sol. E = – dx
dV

 = –8xE at (1, 0, 2) = –8V/m

  Magnitude of E = 8 V/m and direction is along
x-axis.

Ex.35 Electric field is given by 2x
100E  . Find potential

between x = 10 and x = 20 m.

Sol.      E = – dx
dV  or dV = – Edx

or    dx.EdV
B

A

B

A  

or    VB – VA = 2

20

10 x
100  = –5 volts

Potential difference = 5volt.
Ex.36 Fig. shows lines of constant potential in a region

in which an electric field is present. The value of
potentials are written. At which the points A, B and
C is the magnitude of the electric field greatest?

Sol. In an electric field, electric intensity E and potential
V are related as

,n
dr
dVE


    i.e.,   dr

dVE 

For a given line, V = constant and the potential
difference between any two consecutive lines
dV = V1 – V2 = 10 V = const.. So E will be
maximum where the distance dr between the lines
is minimum, i.e., at B (where the lines are closest)

Ex.37 Two circular loops of radius 0.05 m and 0.09
m respectively are put such that their axes coincide
and their centres are 0.12 m apart. Charge of 10–

6 coulomb is spread uniformly on each loop. Find
the potential difference between the centre of loops.

Sol. The potential at the centre of a ring will be due to
charge on both the rings and as every element of
a ring is at a constant distance from the centre,

So, 
0

1 4
1V


 
















xR

q
R
q

2
2

2

1

1

     = 9 × 109

















22

44

129

10
5

10

= 2.40 × 105 V

Similarly, 
0

2 4
1V


 
















22
1

1

2

2

xR

q
R
q

or V2 = 9 × 105 




 
13
1

9
1

 = 510
117
198



     = 1.69 × 105 V
So, V1  – V2 = (2.40 – 1.69) × 105 = 71 kV
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Ex.38 A charge Q is distributed over two concentric

hollow spheres of radii r and R (> r) such that the
surface densities are equal. Find the potential at the
common centre.

Sol. If q1 and q2 are the charges on spheres of radii r
and R respectively, then in accordance with
‘conservation of charge’  q1 + q2 = Q
According to given problem 1 = 2

or    2
2

2
1

R4
q

r4
q






or    2

2

2

1

R
r

q
q



So 
)Rr(

Qrq 22

2

1


    and  
)Rr(

QRq 22

2

2




Now as potential inside a conducting sphere is equal
to its surface, so potential at the common centre

V = V1 + V2 = 
04

1
 




 
R
q

r
q 21

  = 
04

1
 















 )rR(
QR

)rR(
Qr

2222

  = 
04

1
 )rR(

)rR(Q
22 



Electric strength (dielectric strength)
The electric strength of air is about 3 × 106 V/m
or 3000 V/mm. This means that if the electric field
exceeds this value sparking will occur in air. This
sets a limit on maximum charge that can be given
to a conducting sphere in air.
The electric strength sets a limit of the maximum
charge that can be placed on a conductor.
Electric potential energy
The electric potential energy of a system of fixed
point charges is equal to the work that must be done
by an external agent to assemble the system, bringing
each charge in from an infinite distance.
U is a scalar quantity.
Dimension of [U] = ML2T–2

Unit of [U] = joule
For two charges

r
qkqU 21 12VqU 

12

21

r
qkq

U 

For three charges
U = U12 + U23 + U13

13

31

23

32

12

21

r
qkq

r
qkq

r
qkq



Ex.39 Three charges, –q, Q, q are placed at equal
distances on a straight line. If the total potential
energy of the system of the three charges is zero,
then Q  : q = .....

Sol. Let d be the equal distance. The total potential energy
of the system is,

  U = U12 + U23 + U31

or  






 



d2
qq

d
qq

d
qq

4
1U 133221

0

or, 






 



2
qQQ

d
q

4
1U

0
 Since U = 0

–2Q + 
2
q  = 0 or, –4Q + q = 0

or, 4Q = q or, q
Q

 = 1 : 4

Ex.40 Three charges are arranged as shown in fig. Find
the potential energy of the system.

Sol. The potential energy of the system is
U = U12 + U23 + U31


















a
qq

a
q)q(

a
)q(q

4
1 13321

0











 











1.0
102

1.0
108

1.0
104

4
1 141414

0



















)284(
1.0

10
4

1 14

0

or  U = 9 × 109 × 10–13 (–10)
      = –9 × 109 × 10–12

  –9 × 10–3 joules
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Ex.41 An electron (charge, –e) is placed at each of the

eight corners of a cube of side a and -particle
(charge, +2e) at the centre of the cube. Compute
the P.E of the system.

Sol. Fig., shows an electron placed at each to the eight
corners of the cube and particle at the centre. The
total energy of the system is the sum of energies of
each pair of charges. There are 12 pairs like A and
B (separation a), 12 paris like A and C (separation,

a2 ), 4 pairs like A  and G (separation a3 ) and

8 paris like A and 0 (separation 
2
3  a). Hence

04
1U






























a

)e2()e(8
a3

)e()e(4
a2

)e()e(12
a

)e()e(12
2
3

  = (9 × 109) 
a

e2










3
32

3
4

2
1212

  = (9 × 109) 
a
e2

 (4.32) = 3.9 × 1010 










a
e2

 J.

Ex.42 The value of q1 and q2 are 2 × 10–8 coulomb and
0.4 × 10–8 coulomb respectively as shown in fig. A
third charge q3 = 0.2 × 10–8 coulomb is moved from
point C to point D along the arc of a circle. The change
in the potential energy of charge will be -

Sol. Potential energy of q3 at point C








 
1
qq

8.0
qqkU 2331

C .....(1)

Potential energy of q3 at point D








 
2.0
qq

8.0
qqkU 3231

D .....(2)

  UD –  UC = kq2q3 







1
1

2.0
1

= 9 × 109 × 0.4 × 10–8 × 0.2 × 10–8 × 4
= 2.88 × 10–7 joule

Electron volt It is equal to the amount of energy
gained by an electron when accelerated through a
potential difference of one volt. It is unit of energy.

1 eV = 1.6 × 10–19 joule
When a charged particle moves under the influence
of an electric field, then,
Kinetic energy gained = Potential energy lost
Energy density In electric field, energy stored per
unit volume is called energy density. It is equal to

2
0E2

1u 
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6. ELECTRIC FIELD AND POTENTIAL DUE TO DIFFERENT BODIES

Graphical representation of changes electric field and electric potential
 S. Charge Point observation  Gaussian   Eleectric ficid Electric potential E-r curves V-r curves
 No. distribution  surface

 1. Point charge  Spherical     r̂
r
KqE 2

r
kqV

 2. Group of  Point Pdistant Spherical    




n

li
2
i

i

r
KqV 




n

li i

i

r
Kq

V
source  r1, r2, r3 ...from
chariges  q1, q2, q3 ...

 respectvely

 3. Uniform     2r
dqKE 

r
dqkV

distribution    
  2r

dVKE 



r
dVkV

of charges

 4. Charged  (i) Point is

conducting  situated  Spherical    
r̂

r
KqE 2

r
KqV

sphere  outside the
 conducting
 sphere
 (r > R)

 (ii) Point is

 situated on the Spherical    r̂
R
KqE 2

r
KqV 

 surface of
 conducting
 sphere
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(iii) Point is Spherical     E =0
R
KqV 

 situated inside
 the conducting
sphere (r<R)

(iv) point is Spherical     E = 0
R
KqV 

 situated of the
centre of sphere
 (r = 0)

(v) point is Spherical     E = 0 V = 0
situated
at (r =  )

 5. Uniformly (i) r>R Spherical    
r̂

r
KqE 2

r
KqV 

charged   
non
conducting
sphere

(ii) r = R Spherical   2s R
KqE 

R
KqVs 

(iii) r < R Spherical   


 r
R
KqE 3i 3

22

R2
rR3KV 


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(iv) r = o Spherical    E = 0
sV

2
3

R2
Kq3V 

(v) r =  Spherical    E = 0 V = 0                   

 6. Charged Outside plate Cylindrical    n̂E
0





CrV
0







conducting

plate      
n̂

A
q

o


 7. Infinite Outside the sheet Cylindrical   n̂
2

E
0





C
2

rV
0







sheet of
Charge

n̂
A2
q

o


 8. Infinite time  At a distancer Cylindrical     r̂
r
K2E 

 crlog
2

V c
o







of Charge from the axis of     r̂
r2

E
o


 crlog

l2
qV
o







cylinderical

gaussian surface     r̂
r

qK2E




r̂
r2

q
E

o 

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 9. Charged (i) At an out side  Cylindrica    
r̂

r2
E

o


 crlog
2

V e
o






cyllndrical point r>R
conductor       

(ii) At an inside  Cylindrica    2
oR2
rE




 c

R4
rV 2

o

2







    point  r < R

(iii) At the surface  Cylindrical   R2
E

o


 crlog
2

V e
o







      r = R
 10. Linear  Cylindrical    

r2
r̂sinE

o


 




















1rr

1r
log

2
V

22

22

o


charge
distribution
of length 

 11. Charged (a) On the axis
22

o rR2
V




circular ring of ring at a

distancer from
its centre

2
3

22
o rR2

r̂RE





(b) at the centre         E = 0   V = constant
of ring

 12. Electric (i) On the axis of  Cylindrical   
3axial r

KP2E  2r
KPV

dipole dipole at a dista
cer from is its    

3eqatorial r
KPE 

    V = 0
centre (ii) On the
equatiorial axis    

 2
3 cos31

r
KPE

3r
r.PKV


at a distancer
                   from its centre
                  (iii) at point (r,)     
                  from the centreof
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 ELECTRIC DIPOLE

Two equal and opposite charges separated by a small
distance is called an electric dipole.

The dipole moment p  is a vector quantity whose
magnitude is equal to the product of magnitude of
one charge and the distance between the two
charges. It is directed from negative charge to positive
charge.

Unit of dipole moment (p) = coulomb × metre = C.m
Dimensions of p = M0L1T1A1

Electric field at an axial point

222 ])2/d(r[
pr2kE







The direction is along the axis, parallel to 

p . The

magnitude is

04
1E


 222 ])2/d(r[
pr2



For r >> d,

3
0 r

p2
4

1E




Electric field at an equatorial point
The electric field at an equatorial point P is

2/32
2

2
dr

pkE


























The field is directed opposite to p  and the magnitude

is
04

1E


 2/322 ))2/d(r(
p



For r >> d

3
0 r

p
4

1E




Electric field at (r, ) point
For  r >> d, the radial component Er and angular
component E of electric field due to a dipole, are

3r r
cosp2kE 



3r
sinpkE 



The resultant field is
22

r EEE 

 2
3 cos31

r
kp

The angle in figure is such that

tan =  tan
2
1

E
E

r

Force and torque on a dipole placed in an electric
field

(a) A positive charge +q experiences a force parallel

to the electric field 


 EqF
(b) A negative charge –q experiences a force in a

direction opposite to that of the electric field 


 EqF
(c) The total force on a dipole placed in an uniform
electric field is zero )Eq(EqF


  = 0

(d) The torque on a dipole placed in uniform electric

field is 


 Ep   sinpE
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Electric potential due to a dipole

The potential at an axial point (P1) is

22
0 )2/d(r

p
4

1V




If d << r then

2
0 r

p
4

1V




where p = qd is the dipole moment
The potential at an equatorial point (P2)

0V 

The potential at any arbitrary point (P3, located at r,
coordinates) is (for r >> d)

2
0 r

cosp.
4

1V 




Potential at a point which is equidistant from +q
and –q charge is zero. Thus potential at all points
lying on the equatorial plane is zero for a dipole.

Potential energy of a dipole
The work done in rotating a dipole placed in a uniform
electric field E, from initial angle 1 to final angle 2 is

 




dW
2

1

     = pE (cos 1 – cos2)

where U2, U1 are the potential energy of the dipole
in the two orientations.
Potential energy
U2 – U1 = – pE cos 2 – (–pE cos 1)
            = –pE (cos 2 – cos 1)

The zero of the potential is taken at = 90º . Thus,
potential energy of the dipole is


 E.pU    = –pE cos 

Umin = –pE,  Umax = + pE
Work done in rotating a dipole from = 0 (aligned
parallel to E), to  = 180º (aligned antiparallel to E)
is pE2W 

Ex.43 The work required to turn an electric dipole end
for end in a uniform electric field when the initial angle

between p  and E  is 0 is -

Sol. W = pE (cos1 – cos2), in this case 1 = 0 and 2

=  = 0. Thus
W = pE {cos0 – cos ( + 0)}
   = 2pE cos 0

Ex.44 Calculate the electric intensity due to a dipole of
length 10 cm and having a charge of 500 C at a
point on the axis distance 20 cm from one of the
charges in air .

Sol. The electric intensity on the axial line of the dipole

222
0 )d(

pd2
4

1E




2t = 10 cm   = 5 × 10–2 m
d = 20 + 5 = 25 cm  = 25 × 10–2 m
p = 2q = 2 × 500 × 10–6 × 5 × 10–2     5 × 10–

3 × 10–2 = 5 × 10–5 C-m

 2228

259

]525[10
10251052109E










  6.25 ×

107 N.C.
Ex.45 Calculate the electric intensity due to an electric

dipole of length 10 cm having charges of 100 C at
a point 20 cm from each charge.

Sol. The electric intensity on the equatorial line of an

electric dipole is 2/322
0 )d(

p
4

E





p = 2 q C-m
= 10 × 10–2 × 100 × 10–6

= 10–5 C-m
d2 + 2 = (20 × 10–2)2 = 4 × 10–2

 2/32

59

)104(
10109E










7
3

59
10

8
9

810
10109











 = 1.125 × 107 N/C
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Ex.46 Find out the torque on dipole in N-m given :

Electric dipole moment )k̂2ĵî5(10P 7  


coulomb metre and electric field )k̂ĵî(10E 7 


Vm–1 is -

Sol. 
 EP  = 

111
215

k̂ĵî


)15(k̂)52(ĵ)21(î  k̂4ĵ7î3 

6.8|| 


 N-m

 CHARGED LIQUID DROP
If n small drops each of radius r coalesce to form a
big drop of radius R, then

(i) 33 r
3
4nR

3
4 



 R = rn1/3

(ii) If each small drop has a charge q, then the charge
on the big drop

nq'q 

(iii) If V is the potential of the small drop, then the
potential of the big drop will be

3/2
3/1 Vn

rn
Knq

r
'Kq'V 

(iv) If E is the electric field intensity at the surface of
the small drop, then the electric field intensity at the
surface of the big drop will be

En
r

Kqn
R
Knq

R
'Kq'E 3/1

2

3/1

22 

Ex.47 1000 equal drops of radius 1cm, and charge
1 × 10–6 C are fused to form one bigger drop. The
ratio of potential of bigger drop to one smaller drop,
and the electric field intensity on the surface of bigger
drop will be respectively -

Sol. Let the potential of one smaller drop be B then
potential of bigger drop, is V’ = n2/3 V

3/2n
V

'V
  = (1000)2/3 = 100

 V’ : V = 100 : 1
Also let the electric field on the surface of smaller
drop be E then electric field on bigger drop is

E’ = n1/3 E = n1/3
2r

kq = (1000)1/3
22

69

)101(
101109


 

= 9 × 108 V/m

 FORCE ON A CHARGED SURFACE
(i) If we consider an element of the charged surface,

then the charge on the element experiences a
repulsive force due to the charge on the remaining
part. As a result, a resultant force acts on it
perpendicular to the surface in the outward direction.

(ii) The charged surface behaves as a stretched
membrane.

(iii) If is the surface charge density, then the electric
field intensity at external points close to the surface

is 
0


 and at internal points close to the surface the

field is zero. Thus the average intensity at the surface.

02
E






(iv) The repulsive force acting on a unit area of the surface
will be.

0

2

2
EF




 N/m2

(v) The repulsive force acts in the outwards direction.
The force acting on a unit area of the surface is
electrical pressure.


0

2

elec 2
P






= 2K2 N/m2
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 EQUILIBRIUM OF A CHARGED
 SOAP BUBBLE
(i) In equilibrium the air pressure inside a soap bubble

is greater than the atmospheric pressure. This excess
pressure is produced due to surface tension of the
soap solution. If r is the radius of the bubble and T is
its surface tension, then for the uncharged bubble in
equilibrium,
Force due to excess pressure = force produced due
to surface tension

2
ex rp   = T(2 × 2r)


r
T4pex 

(ii) If a bubble is charged, then electrical pressure due
to charge acts in outwards direction on the bubble.

0

2

elec 2
p






where is the surface charge density.
(iii) In equilibrium, the force produced due to surface

tension is equal to the sum of forces due to excess
air pressure inside the bubble and the electrical
pressure due to charge, i.e.
(pex + pelec)r2 = T(2 × 2r)

or pex + pelec= 
r
T4

or r
T4

2
p

0

2

ex 





(iv) For charged bubble,

0

2

ex 2r
T4p






(v) If the air pressure inside the bubble is equal to the
atmospheric pressure outside, i.e., pex = 0 then

r
T4

2 0

2





or Kr
T2

r
T8 0







(vi) If charge given to the soap bubble is q, then

2r4
q




The charge on the bubble

 2r4q

  = 3
0

02 Tr28
r

T8
r4 


 K/Tr32 3

(vii) The intensity of electric field at the surface of the
bubble

r/T8r/TK32E 0

(viii) The electric potential at the surface of bubble

0/Tr8rTK32V 

(ix) On charging  a bubble the air pressure inside it
decreases because the radius of  the bubble increased
due to charging.

(x) A soap bubble always expands on giving any kind
of charge (positive or negative)

(xi) When charge is given to the soap bubble, Boyle’s
law holds during this process because mass of air
inside the bubble remains constant.

 MOTION OF A CHARGED
 PARTICLE IN ELECTRIC FIELD
(i) A charged particle at rest or moving experiences a

force 
 EqF  in the presence of electric field. The

acceleration, velocity and displacement are given by

m
Eqa






 atuv
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
 2at

2
1uts

(ii) For a charged particle with initial velocity
perpendicular to the electric field
Note that  Fx  = 0, ax = 0, Vx = u at all times

Fy = qE, ay = 
m
qE , VVy = 

m
qE t

The displacement components are  x = ut

2t
m
qE

2
1y 

Eliminating t,    2
2 x

mu
qE

2
1y   which is the equation

of a parabola.
(iii) The path of a charged particle entering a region of

electric field with initial velocity perpendicular to the
field follows a parabolic trajectory.

The time spent in electric field is u
Lt   (see fig. A)

The y component of velocity when it emerges out of

the field region is  mu
qELVy 

The resultant velocity

2
y

2
x VVV 

2
2

mu
qELu 









The angle at which the particle emerges

x

y

V
V

tan  2mu
qEL



The height Y at which the particle hits the screen
(see fig. A)
Y = D tan

2mu
qELDY  

K2
qELDY 

(where K is initial kinetic energy)

Ex.48 A positively charged oil droplet remains stationary
in the electric field between two horizontal plates
separated by a distance of 1cm. If the charge on the
drop is 9.6 × 10–10 esu and the mass of droplet is
10–11 g, what is the potential difference between two
plates ? Now if the polarity of the plates is reversed
what is the instantaneous acceleration of the droplet?
[g = 9.8 m/s2]

Sol. As the droplet is at rest, its weight W = mg will be
balanced by electric force F = qE
i.e.,  qE = mg

or q
mgdV 

)103/106.9(
)101)(8.9)(10(V 910

214










 = 3062.5 volt

Now if the polarity of the plates is reversed, both
electrical and gravitational force will act downward
so, F = mg + qE = 2mg      [as mg = qE]
And hence instantaneous acceleration of drop :

m
mg2

m
Fa   = 2g = 19.6 m/s2

Ex.49 An oil drop ‘B’ has charge 1.6 × 10–19 C and
mass 1.6 × 10–14 kg. If the drop is in equilibrium
position, then what will be potential diff. between
the plates. [The distance between the plates is
100mm]

Sol. For equilibrium, electric force = weight of drop

  qE = mg    or mg
d
Vq 

 q
mgdV  = 19

314

106.1
10108.9106.1








=104 volt
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CAPACITANCE

 CAPACITANCE OF A CONDUCTOR
* A capcitor is a divice which stores electric energy.

It is also named as condenser.
* When charge is given to a conductor, its potential

increases in the ratio of given charge.
The charge given to the conductor is directly
proportional to its potential.
Q v  or Q = cv
where C is a constant called electrical capacitance
of the conductor.
If V=1 volt, then Q = C; i.e., the electrical
capacitance of the conductor is equal to that amount
of charge which increases the potential of the
conductor by a unit amount.

* The electrical capacitance of the conductor depends
upon the following:
(a) The size of the conductor:
The capacitance is directly proportional to the area
of the surface of the conductor, i.e., C A (area)
(b) The medium around the conductor: If a conductor
is placed in a medium other than air or vacuum, its
capacitance will increase.

vacuumorairmedium KCC 

where K is a constant called dielectric constant of
the medium. This constant is always greater than 1.

* Theoretically the charge can be given to any isolated
conductor upto an infinite amount. When a very large
amount of charge is given to the conductor, its
potential increases to such an extent that dielectric
breaks down and the charge starts leaking from the
object and electrical discharge takes place between
the conductor and nearby objects or earth. This
decreases the potential of the conductor.

* Unit of Capacitance:
(a) In M.K.S. system unit of capacitance is farad.

volt
coulombfarad 

Dimensions of the capacitance are 2421 ATLM 

(b) If a charge of one coulomb given to a conductor
increases the potential by one volt, then its
capacitance is one farad.
(c) In practice, submultiples of farad are used as
units of capacitance.

1 micro farad = F10F1 6

1 nano farad = F10nF1 9

1 micro-micro farad or pico farad =

F10pF1F1 12

(d) Electrostatic unit of electrical capacitance is stat
farad.
1 farad = 9  × 1011statfarad

 CAPACITANCE OF SPHERICAL
 CONDUCTOR

When a charge Q is given to a spherical conductor
of radius R, then

* The potential of the surface of the spherical conductor

will be R4
QV

0


* Electrical capacitance of spherical conductor in
M.K.S. system will be

R4
R4/Q

Q
V
QC 0

0





In C.G.S. system, RC   because K = 1 (in C.G.S
unit)

* The electrical capacitance of a spherical conductor
is directly proportional to its radius i.e., C R

* The electrical capacitance of a spherical conductor
does not depend on the charge given to a conductor.
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 POTENTIAL ENERGY OF A
 CHARGED CONDUCTOR
 OR STORED ENERGY
* The work done in charging a conductor is equal to

its potential energy or the stored energy.
* This energy resides in the form of energy of the

electric field created.
* The potential energy of a charged conductor:

 
Q

0

2Q

0
C2

Q
qdq

C
1

VdqU  or 2CV
2
1QV

2
1U 

* Unit of U is joule
* Energy stored in the conductor depends upon the

given charge, its potential and its capacitance.
* Stored energy depends upon the capacitance of the

capacitor and the given charge or the potential
difference. It does not depend upon the shape of
the capacitor.

* If the area of the plates are A and the thickness of
dielectric constant is d, then energy stored per unit
volume i.e., energy density of the medium will be

2
r0

2 E
2
1E

2
1u 

where E is the electric field.
* The energy of the charged capacitor resides in the

electric field between its plates.

Note : In charging a capacitor by battery half the
energy supplied is stored in the capacitor and

remaining half energy  is lost in the form of

heat.

 REDISTRIBUTION OF CHARGE
 ON JOINING THE CHARGED
 CONDUCTORS AND ENERGY LOSS
* When two charged conductors are joined together

by a conducting wire of negligible capacity, the charge
flows from higher potential to lower potential.

* When the potentials of both conductors become
equal, the flow of charge stops.

* Law of conservation of charge holds good in the
process i.e., total charge on the two conductors will
be same after redistribution.

* Let the amounts of charge on the conductors be 1Q

and 2Q  and their electrical capacitances be 1C  and

2C  respectively. If their potentials are 1V  and 2V , then

111 VCQ   and 222 VCQ 

Total charge 21 QQQ 

2211 VCVC 

Total capacitance 21 CCC 

* On joining the conductors, the common potential
becomes V, then

21

2211

CC
VCVCV






The charge on the conductors after joining them
will be

21

22111
1

'
1 CC

VCVCCVCQ





21

22112
2

'
2 CC

VCVCCVCQ





Charge transferred 21
21

21 VV
CC

CCQ 






53

Electrostatic Potential and Capacitance
* The ratio of the amounts of charge after redistribution

2

1
'
2

'
1

C
C

Q
Q



* In the process of redistribution of charge some work
is to be done. Total amount of charge remains
constant in this process but their total potential energy
decreases i.e., there is loss of energy. This loss of
energy is due to transformation of electrical energy
into heat in the connecting wire and in electrical
discharge.

* Energy loss due to redistribution of charge

finalinitial UUU 

2
21

21

21 VV
CC

CC
2
1











 ,

which is always positive.

(a) If 21 VV  , then 0U   that is, there is no loss
of energy. Hence no loss of energy occurs in joining
the conductors of equal potentials.

(b) If 21 VV   or 12 VV  , then 2
21 VV   will remain

positive. Thus energy will be lost, i.e., there is always
loss of energy in joining the conductors at unequal
potentials.

Ex1. A 20 capacitor is charged to potential of 500V
and then connected in parallel to another capacitor
of capacity F10 . If the potential of F10  capacitor
is 200 volt then the common potential of two will
be
[1] 100 V [2] 200 V
[3] 300 V [4] 400 V

Sol.  V =
21

2211

CC
VCVC




 = V400
10101020

10105001020
66

66









Hence the correct answer will be (4)

 CAPACITANCE OF CAPACITORS
 OF DIFFERENT SHAPES

(i) Parallel plate capacitor : It consists of two
parallel plates separated by a small distance d with
a dielectric material in between.
If A is area of each plate, d is the distance between
the plates and r  is the dielectric constant of the
material placed between the plates, then the
capacitance of parallel plate capacitor will be

d
A

C 0

(for air or vacuum as medium)

where m/F1085.8 12
0

 and d
A

C r0


(for medium of dielectric constant r )
Note : (i) If two plates are placed side by side then
three capacitors are formed. One between distant
earthed bodies and the first face of the first plate,
the second between the two plates and the  third
between the  second face of the second plate and
distant earthed objects. However the capacitances
of the first and third capacitors are negligibly small
in comparison to that between the plates which is
the main capacitance.

* The capacitance of a capacitor depends upon the
following:
(a) Area of the plates : The capacitance is
directly proportional to the area of either plate, i.e.,

AC  .
(b) Distance between the plates : The capacitance
of a capacitor decreases as the distance between

the plates increases i.e., 
d
1C 

(c) Dielectric medium between the plates : If
any medium other than air or vacuum is between
the plates, the capacitance of the capacitor increases
by r  times where r  is called relative permittivity
or dielectric constant of the medium.
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* On keeping the dielectric medium between the

plates, the charge on the plates remains unchanged
but the potential difference between the plates
decreases.
Note : (ii) It is a very common misconception that
a capacitor stores charge but actually a capacitor
stores electric energy in the electrostatic field
between the plates. The energy density of the field

u = 1
2

(iii) Two plates of unequal area can also form a
capacitor because effective overlapping area is
considered.

d

A

(iv) The distance between the plates is kept small
to avoid fringing or edge effect (non-uniformity of
the field) at the boundaries of the plates.

Dielectric Medium and Dielectric Constant:
Note : (v) Dielectrics are insulating (non-conducting)
materials which transmits electric effect without
conducting we know that in every atom, there is a
positively charged nucleus and a negatively charged
electron cloud surrounding it. The two oppositely
charged regions have their own centres of charge.
The centre of positive charge is the centre of mass
of positively charged protons in the nucleus. The
centre of negative charge is the centre of mass of
negatively charged electrons in the atoms/molecules.

(1) Type of Dielectrics : Dielectrics are of two types -

2 3 2 2
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(2) Polarization of a dielectric slab : It is the
process of inducing equal and opposite charges on
the two faces of the dielectric on the application of
electric field.
Suppose a dielectric slab is inserted between the
plates of a capacitor, as shown in figure.

Induced electric field inside the dielectric is E1, hence
this induced electric field decreases the main field
E to E – Ei i.e., New electric field between the plates
will be E’ = E – Ei.
(3) Dielectric constant : After placing a dielectric
slab in an electric field. The net field is decreased
in that region hence.
If E = Original electric field and E’ = Reduced

electric field. Then E
E'

 = K where K is called

dielectric constant K is also known as relative
permittivi ty ( r) of the material or SIC (specific
inductive capacitance)
The value of K is always greater than one. For vacuum
there is no polarization and hence E = E’ and K = 1
(4) Dielectric breakdown and dielectric strength :
If a very high electric field is created in a dielectric the
outer electrons may get detached from their parent
atoms. The dielectric then behaves like a conductor.
This phenomenon is known as dielectric breakdown.
The maximum value of electric field (or potential
gradient) that a dielectric material can tolerate without
it’s electric breakdown is called it’s dielectric strength.

S.I. unit of dielectric strength of a material is V
m

 but

practical unit is kV
mm

.

* On the basis of electrical behavior there are three
types of medium:
(a) conductor  (b) semiconductor   (c) insulator

* Free charge carriers do not exist in insulators and
their conductivity is of the order of 1610  mho/metre
or resistivity of the order of 1610  ohm-m.

* In insulators there is microscopic local displacement
of charges under the influence of electric field. Such
materials are called dielectrics.

* Electrical behaviour of a dielectric medium is
represented by a dimensionless constant called
dielectric constant.

Dielectric constant spacefreeorvacuumoftyPermittivi
mediumoftyPermittivi



0
r 




Dielectric constant is also called relative permittivity
or specific inductive capacity of that medium.

* Dielectric constants are different for different media.
* Following effects are observed when a dielectric

medium is placed between the plates of the capacitor.
(a) The capacitance of the capacitor increases while
the potential difference between the plates decreases.
(b) The capacitor can be charged upto a higher
potential than without the dielectric.
(c) Electrostatic potential energy of the capacitor
decreases.
(d) The plates of the capacitor can be placed very
close to each other without touching each other.

* The capacitance C, electric field E, potential
difference V and the charge q are effected due to
introduction of dielectric medium as follows
(a) r0CC 

(b) 
r

0E
E


  for a given charge

(c) 
r

0VV


  for a given charge

(d) q'q r  for a given potential difference.
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(a)  If capacitor is partially filled with dielectric
between the plates, then
















r

0

1td

A
C

where t is the thickness of the dielectric medium.
(b) If several slabs of dielectrics of different
thicknesses are placed between the plates, then

C = 
1 2 3

0

31 2

r r r

A

tt t .....


 

   
    

(c)  If a slab of metal r  of thickness t is placed

between the plates, then td
A

C 0






Ex.2 Two dielectrics of equal size and of constant 2 and
3 respectively fill up space between two plates of
a condenser. The ratio of capacities in two possible
arrangements will be

[1] 25
24

[2] 
24
25

[3] 5
4

[4] 
4
5

Sol.       C1 = ]KK[
KK2

21

21



   C2 = 
2

]KK[ 21 

  
2

1

C
C

 = 2
21

21

)KK(
KK4



or   
2

1

C
C

 = 25
324 

 = 25
24

  Hence the correct answer will be (1)

Ex.3 The capacity of a parallel plate capacitor in air is
F50  and on immersing it into oil it becames F110 .

The dielectric constant of oil is
[1] 0.45 [2] 0.55
[3] 1.10 [4] 2.20

Sol. K = 
0C

C

K = 50
110

 = 5
11

 = 2.20

Hence the correct answer will be (4)

Ex.4 A parallel plate capacitor with air between the plates
has a capacitance of 8 pF. What will be the
capacitance if the distance between the plates is
reduced by half, and the space between them is filled
with a substance of dielectric constant 6?

[1] 86 pF [2] 96 pF
[3] 90 pF [4] 80 pF

Sol. For parallel plate capacitor

C = d
AK 0 , with K = 1 for air

If distance between plates is reduced to half and
K = 6, the new capacitance is

d
A

.12

2
d

A
6'C 00 













  = 12 × 8 pF = 96 pF
Ex.5 In a parallel plate capacitor with air between the

plates, each plate has an area of 23 m106   and the
distance between the plates is 3 mm, in the capacitor
a 3 mm thick mica sheet of dielectric constant = 6,
is inserted between the plates, while the voltage
supply remains connected. What is the charge on
each plate now

[1] Coulomb1008.1 8 [2] Coulomb1008.2 8

[3] Coulomb1008.3 8 [4] Coulomb1008.4 8
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Sol. If dielectric is inserted, the capactiance becomes

C’ = KC
  6 × 18 pF
The charge on plates is Q = C’ V
= 108 × 10–12 × 100
= 1.08 × 10–8 coulomb

Ex.6 A parallel plate condenser is charged to a certain
potential and then disconnected. The separation of
the plates is now increased by 2.4 mm and a plate
of thickness 3 mm is inserted into it keeping its
potential constant. The dielectric constant of the
medium will be
[1] 5 [2] 4
[3] 3 [4] 2

Sol. As charge and potential of the condenser both are
constant in two cases, hence its capacity must also
remain constant
C0 = C

or d
A0  = 





 



K
11t'd

A0

or d = d’ – t 




 
K
11

or (d’ – d) = t 




 
K
11

or 2.4 × 10–3 = 3 × 10–3 




 
K
11

or 
K
11  = 0.8  or 2.0

K
1


     K = 5
Hence the correct answer will be (1)

(ii) Spherical Capacitor: It consists of two
concentric spheres. The space between the spherical
surfaces is filled by a dielectric.
(a) When outer sphere is earthed and inner is given
the charge, then

12

21
r0 RR

RR4C




(b) When inner sphere is earthed and outer one is
given the charge, then

20
12

21
r0 R4

RR
RR4C 




In order to increase the capacitance of a spherical
capacitor:
(1) both spheres should be very close to each other
i.e., 12 RR   should be small.

(2) medium between the spheres should be such that
its dielectric constant is high.
(3) the radii of both spheres should be large.
(iii) Cylindrical capacitor : It consists of two coaxial
cylinders with the space between them filled by a
dielectric.

If 1R  and 2R  are the radii of inner and outer cylinders
respectively and  is the length of the cylinder, then













1

2

02

R
Rlog

l
C

e

r













1

2
10

0

3032

2

R
Rlog.

lr

(iv) Capacitance of two parallel transmission
lines: If the radius of each wire is r, d is the distance
between them (d > > r) and  is the length of the
wires, then












r
dlog

lC
e

r0












r
dlog.

lr

10

0

32



As medium between the wires is usually air so












r
dlog

l
C

e

0
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(v) Multiplate capacitor and capacitance of a
variable capacitor : If n is the number of plates,
A is the area of each plate, r  is the dielectric constant
of medium and d is the distance between two
successive plates, then

d
A

1nC r0


In order to obtain signals of a desired frequency in
electronic instruments such as radio, T.V. etc., a
parallel resonance circuit is used. In this circuit a
special type of parallel plate capacitor called gang
condenser is connected in parallel with an inductance
coil. It consists of two sets of semi circular plates.
The plates of one set are stationary and the plates
of other set are rotated by means of a knob. By
changing the common area of the plates, the resultant
capacitance can be changed.

 COMBINATIONS OF CAPACITORS
Capacitors can be combined in two ways:
(a) Series combination
(b)Parallel combination
(a) Series combination:

* Combination of capacitors on series is shown in
following diagram

* Amount of charge is same on each capacitor, i.e.,
.....VCVCVCQ 332211 

* Potential difference across each capacitor will be
different and is inversely proportional to its
capacitance.

3
3

2
2

1
1 C

QV,
C
QV,

C
QV 

In this combination the potential difference between
the plates of the capacitor of least capacitance is
maximum.

* The potential difference applied in this combination
is the sum of potential differences on individual
capacitors.

.....VVVV 321 

* If C is the equivalent capacitance of this
combination, then

....
C
1

C
1

C
1

C
1

321


That is, if several capacitors are connected in
series,then the reciprocal of the capacitors equivalent
capacitance is equal to the sum of the reciprocals
of capacitances of the individual capacitors.

* On combining the capacitors in series, the total
capacitance of the circuit decreases and the
equivalent capacitance is less than the lowest
capacitance connected in series.

* If n identical capacitors each of capacitance C’ are
connected in series, then the equivalent capacitance

will be : 
n
'CC 

* This combination is used when:
(a) a capacitance less than the lowest value of the
given capacitance is needed,
(b) a high voltage is to be divided on several
capaacitors.
(b) Parallel combination :

* Combination of capacitors in parallel is shown in the
diagram given:

* The potential differance across each capacitors is
equal to the applied potential difference in the circuit.

* The amount of charge is different on each capacitor
and the charge is directly proportional to the
capacitance of the capacitor.

....VCQ,VCQ,VCQ 332211 
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* Total charge in the circuit :

...QQQQ 321 

or ...VCVCVCQ 321 

* If C is equivalent capacitance of this combination,
then:

...CCCC 321 

That is, the equivalent capacitance of the capacitors
connected in parallel is equal to the sum of their
capacitances.

* On combining the capacitances in parallel the
equivalent capacitance of the circuit increases.

* If n identical capacitors each of capacitance C are
connected in parallel, then equivalent capacitance
will be :

C’ = nC
* This combination is used when :

(a) The capacitance in the circuit is to be increased.
(b) Higher capacitance is required at low potential.

Ex.7 Three capacitors of same capacitance are
connected in parallel. When they are connected to
a cell of 2 volt, total charge of C8.1   is accumulated
on them. Now they are connected in series and then
charged by the same cell. The total charge stored
in them will be
[1] C8.1  [2] C9.0 

[3] C6.0  [4] C2.0 

Sol. If the capacitance of each capacitors is C, then
equivalent capacitance on joining them en parallel will
be 3C.
Stored charge Q = 3CV

 C = V3
Q

= 23 

Let C’ be the equivalent capacitance on joining them
in series, then

3.0
3

3.0
1

3.0
1

3.0
1

'C
1



3
3.0'C   = 0.1 F

Now  Q’ = C’V = 0.1 × 2 = 0.2 C
Answer will be (4)

Ex.8 In the adjoining figure, if the capacitance of each
capacitor is F1 , then the equivalent capacitance
between A and B will be

[1] F2

[2] F5.2 

[3] F5.4 

[4] F5

Sol. If equivalent capacitances of the rows of capactors
are C1, C2, C3....., then

C1 = 1 F C2 = 
2
1

F

C3 = 
4
1
F  C4 = 8

1
F etc.

Equivalent capactance between A and B
C = C1 + C2 + C3 + C4 + .....

   = 1 + 8
1

4
1

2
1



This is a geometric series whose first term is a =

1 and common ratio r = 
2
1

C = 
2
11

1
r1

a




  = 2F

Answer will be (1)
Ex.9 The effective capacitance between points A and

B is F1 . What is the capacitance of C?

[1] F39.1  [2] F46.2 

[3] F23.2  [4] None of the above
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Sol. The circuit is equivalent to fig, Thus, given data implies

that

)9/32C(
)9C32(




= 1

C = 32/23 = 1.39 F
The correct answer is (1)

Ex.10 Four indentical capacitors are connected in series
with a battery of emf 10 V. The point X is earthed.
T hen the potential of point A is

[1] 10 V [2] 7.5 V
[3] 7.5 V [4] 0 V

Sol. The equivalent capacitance of the circuit is C/4 and
the charge on each capacitor is

Q = C’V  = C5.210
4
C



Thus potential difference acros each capacitor is

V = 5.2
C
Q

 volt.

Starting, from grounded point X, we go to point A,
with change in p.d of V across each capacitor.
Thus VA – VX = 7/5 V
since Vx = 0, thus VA = 7.5 volt.
The correct anser is (2)

Ex.11The equivalent capacity between the points X and
Y in the following circuit will be

[1] F6 [2] F1

[3] F24 [4] F3

Sol. Because the bridge is balanced, hence the central
capacitance between Z and T is ineffective.
C1 and C2 are connected in series, hence their

resultant C’ = 
2
C  = 3F

C3 and C4 are connected in series, hence their

resultant C” = F3
2
C



Now the two branches are connected in parallel
 Ceq = 3 +3 = 6F
Hence the correct answer will be (1)

Ex.12 Five similar condenser plates, each of area A,
are placed at equal distance d apart and are
connected to a source of e.m.f. E as shown in the
following diagram. The charge on the plates 1 and
4 will be

[1] d
A2

,
d

A 00 
[2] d

AV2
,

d
AV 00 

[3] d
AV3

,
d
AV 00 

[4] d
AV4

,
d
AV 00 

Sol. Equivalent circuit diagram charge on first plate
Q = CV   

Q = d
AV0

charge on fourth plate

d
AV'Q 0

As okate 4 us reoeated twice, hence charge on 4
will be Q’’ = 2Q’

Hence d
AV2'Q 0

Hence the correct answer will be (2)
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Ex.13 Four condensers of equal capacity are connected

as shown in the figure. If the capacity of the system
between P and Q is F1  then the capacity of each
condenser will be

[1] F1 [2] F2

     [3] F3 [4] F4

Sol. All the four condensers are connected in series
between P and Q and capacity of each is say C.
Hence resultant capacity of the combination

C’ = 
4
C

But C’ = 1 f
C = f
Hence the correct answer will be (2)

Ex.14 Two condensers are joined as shown in the figure.
Their central rigid part is movable. The capacity of
the combination will be

[1] ba
A0




[2] ba
A2 0




[3] 
ba
A0


 [4] A

ba

0


Sol. For the first condenser

C1 = d
A0

For second condenser

C2 = )db(a
A0




C1 and C2 are connected in series

C = 
21

21

CC
CC
  = 

d
A0  = 

)db(a
A

d
A

)db(a
A

00

0










)ba(
A0






Hence the correct answer will be (3)

 USE OF CAPACITORS
(a) In storing charge .
(b)In storing energy .
(c) In electronic devices for tuning.
(d)In electrical appliances as circuit elements, for
smoothing rectified current, in timing circuits etc.
(e) In scientific studies.

 CHARGING AND DISCHARGING
 OF A CAPACITOR THROUGH
 A RESISTANCE

(i) Charging process:

(a) When a capacitor of capacitance C connected
in series with a  resistance R is charged from a source
of voltage ,V0 then the voltage across the capacitor
increases from zero to the maximum value.The
voltage at any time t is given by

vt = v0 (1 – e–t/CR)
(b) In charging, initially the current is maximum.
Afterwards the current decreases exponentially with
time as :

CR/t
0 eII 

where 0I = maximum current

   =
R
V0

(c) The charge on the capacitor at time t is
CR/te1Qq 

* In charging a capaciator the voltage and the charger
rise exponentially whereas the current decreases
exponentially.

* When ,t  the current becomes zero and the
potential difference across the capacitor becomes
equal to the voltage of the applied voltage source.
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* RC is called time constant of the circuit. Time

constant is the time in which the charge on the
capacitor and the voltage across the capacitor
become equal to 0.632 or 63.2% times their final
values,i.e., at t=RC

0V632.0V   and Q632.0q 

* Time constant is also the time in which the current
in the circuit reaches a value 0.37 or 37% of its initial
maximum value i.e., at t =RC

0I37.0I 

* In charging, the variation of voltage and current with
time are shown in the following figures:

(ii) Discharging process:
(a) In discharging the potential difference decreases
exponentially with time as : RC/t

0eVV 

(b) The charge also decreases exponentially with
time as : RC/tQeq 

(c) In discharging the current decreases exponentially
from maximum with time, as RC/t

0eII 

* In discharging the variation of the voltage and the
current with time are shown in the following figure:

Ex.15 A capacitor of capacity F10  is charged through
a resistance of 100 k  by a dc source of 2 volts.
The potential difference across the capacitor after
2 sec will be

[1] 2.0 V [2] 1.73 V
[3] 1.52 V [4] 1.0 V

Sol. Time constant of the RC circuit
  = RC = 100 × 103 × 10 × 10–6

  = 1 sec
During the process of charging
V = V0 (1 – e–t/RC), (e = 2.718)
   = 2 (1 – e–2/1) = 2 (1– 0.135)
   = 2 × 0.865 = 1.73 volts
Answer will be (2)

Ex.16 A F2500  capacitor is charged through a K1

resistor by a 12V d.c. source. What is the voltage
across the capacitor after 5 sec?
[1] 10.38 volt [2] 11.38 volt
[3] 12.38 volt [4] 13.38 volt

Sol. The time constant of the circuit is
= RC

 = 103 × 2500 × 10–6

    = 2.5 sec
For charging
V = V0 (1 – e–t/RC)
put t = 5 sec, and r = 2.5 sec, then

V = 12 (1 – e–2)
    = 12 (1 – 0.135)
    = 12 × 0.865
    = 10.38 volt

 SOME IMPORTANT POINTS
 REGARDING CAPACITORS
* An arrangement of conductors in which capacitance

can be increased without changing the size of the
conductor is called condenser or capacitor. It has
two conductors, one is charged and other is earthed.
A suitable dielectric material may be placed between
them.

* There are several types of capacitors based on the
dielectric such as paper capacitor, electrolytic
capacitor, ceramic capacitor etc. Similarly there are
several types of capacitors based on the shape of
the conductors such as parallel plate capacitor,
spherical capacitor, cylindrical capacitor etc.



63

Electrostatic Potential and Capacitance
* Alternating current flows easily through a capacitor

while direct current does not flow through the
capacitor.

* Both plates of the charged capacitor have equal and
opposite charges. Force of attraction acts between
these plates and it is equal to:

2AE
2
1F 

* If C is the capacitance of the capaacitor,V is the
potential difference and d is the distance between
the plates, then the attracative force between the
plates:

d
CV

2
1F

2


* The relation between the voltage and the current is :

dQ
i

dt
   
 

d dV
VC C

dt dt
    
 

Following conclusions can be drawn from the above
relations.
(a) Since CVQ  , therefore voltage is directly
proportional to the charge but not current.
(b) Capacitor has the ability to accumulate charge,
therefore it has the capability to store information.
(c) There can be potential difference across the
capacitor even when current is not flowing  through
the capacitor.
(d) Capacitor acts as an open circuit for direct
current. Instantaneous current flows during charging
or discharging of the capacitor.

(e) In the above relation C
1

dt
dV

 , that is, the rate

of change of voltage is inversely proportional to the
capacitance of the capacitor. If rate of change of
voltage is less, then C will be more. Thus the voltage
in the capacitor does not change suddenly.

* Comparison of the energy of charged capacitor
and the potential energy of the spring:

(a) Comparing the relation for energy 











C
q

2
1U

2

of the capacitor and the energy of the spring








  2kx
2
1

U , the charge q is equivalent to

displacement x.
(b) The reciprocal of the capacitance of the capacitor

C
1

 is equivalent to the force constant k of the spring.

(c) The potential difference between the plates of

the capacitor C
qV   is equivalent to the restoring

force kxF   of the spring.
* Metallic plate can not be used as a dielectric in the

capacitor because it will short circuit the plates.
* The dielectric constant of a metal is infinite.

 POINT TO BE REMEMBER
* Capacity or Capacitance of a Conductor :

V
QC  ,

Unit is farad = volt
coulomb

1F = 10–6 F, 1 pF = 10–12 F
* Capacitance of a spherical conductor : C =

40R,
0 is permittivity of vacuum.
Cm = 4R = r  (40R)

is permittivity of medium and r is dielectric
constant of the medium.

* Work done in charging or energy stored :

QV
2
1CV

2
1

C
Q

2
1U 2

2

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* Common potential when two charged conductors

are connected :
C = C1 + C2 , Q = Q1 + Q2 = C1V1 + C2V2

Common potential

21

221

CC
VCVCV






Charge transferred

)VV(
CC

CCQ 21
21

21 




Energy loss
2

21
21

21 )VV(
CC

CC
2
1U 




* Capacitor or condenser : An arrangement of
conductors for increasing the capacitance. It has two
conductors placed nearby, one is charged and the
other is earthed.

Capacity of a condenser C = 
V
Q

* Parallel plate capacitor :

C
d

AC,
d

AC r
0

rm
0 













If a dielectric of thickness t is placed in between,
then
















r

0

ttd

AC

If slabs of thicknesses t1, t2, t3 ... tn of dielectric
constants n21 rrr ,....,   are placed in between











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
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A
C

and n21 t....ttd 

* Spherical condenser  :
When outer spherical shell is earthed

12

21
r0 RR

RR4C




When inner sphere is earthed

20
12

21
r0 R4

RR
RR4C 




* Cylindrical capacitor :

)R/R(log
2

C
12e

r0 


)R/R(log303.2
2

1210

r0 


* Multiplate capacitor :

C = (n – 1) 
d

Ar0

* Energy stored in a capacitor :

C
Q

2
1QV

2
1CV

2
1U

2
2 

This energy resides in electric field. Energy density
of electric field

2E
2
1U 

* Combination of capacitors :

Series combination :

Q...QQ,
C
1....

C
1

C
1

C
1

21
n21



Parallel combination :
V...VV,C...CCC 21n21 

* Charging and discharging of a capacitor through
a resistance :
Charging q = Q (q – e–t/RC)

V = V0 (1 – e–t/RC)

R
V

,e 0
0

RC/t
0   III

Discharging RC/tQeq 

    V = V0 e
–t/RC

     I = –I0e
–t/RC

Time constant :
= RC, time in which q = 0.63 Q, V = 0.63 V0

and I = 0.37 I0, while charging, q = 0.37 Q, V =
0.37 V0, I = 0.37I0 while discharging.

* Force of attraction between the plates of a
capacitor :

A
2

AE
2
1F

2
2



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d
CV

2
1
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Q 22
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