Positive Integral Exponents of a Rational Number

A. Choose the Correct Answer:

- 1. The value of $\left(\frac{2}{3}\right)^2$ is:

- 2. $\left(\frac{5}{7}\right)^3$ is equal to:
 - a) $\frac{125}{343}$

b) $\frac{15}{21}$

c) $\frac{35}{343}$

- d) $\frac{25}{49}$
- 3. The value of $\left(\frac{3}{4}\right)^1$ is:

a) $\frac{3}{4}$ c) $\frac{1}{3}$

- **4.** $\left(\frac{2}{5}\right)^4$ is:

c) $\frac{16}{625}$

d) $\frac{8}{125}$

- 5. $\left(\frac{7}{9}\right)^2$ is equal to:

B. Write the Missing Terms to Complete the Sentences:

- 1. $\left(\frac{a}{b}\right)^n = \frac{a^n}{a^n}$
- $2. \left(\frac{3}{5}\right)^2 = \frac{...}{25}$
- $3. \left(\frac{1}{2}\right)^3 =$
- 4. Positive integral exponents represent repeated _____
- $5.\left(\frac{2}{7}\right)^1 =$

C. Figure out the answers to these questions:

- 1. Find the value of $\left(\frac{4}{5}\right)^3$
- 2. Simplify $\left(\frac{2}{9}\right)^2$ and write it as a fraction
- 3. Calculate $\left(\frac{5}{8}\right)^2$
- 4. Find $\left(\frac{7}{11}\right)^3$
- 5. Evaluate $\left(\frac{1}{3}\right)^4$

D. Mark each sentence with a True (✓) or False (✗):

- 1. $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ for any positive integer n.
- $2. \left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3}.$
- $3. \left(\frac{5}{7}\right)^2 = \frac{5^2}{7^3}.$
- $4. \left(\frac{1}{2}\right)^5 = \frac{1}{32}.$
- 5. Positive integral exponents represent division.

E. Challenge yourself with these questions:

- 1. Find the value of $\left(\frac{3}{7}\right)^3$
- 2. Simplify $\left(\frac{5}{6}\right)^2$ and express it as a fraction
- 3. Calculate $\left(\frac{2}{5}\right)^3$
- 4. Find the cube of $\left(\frac{4}{9}\right)$
- 5. Evaluate $\left(\frac{7}{8}\right)^2$