				Edubull				
EXE	RCISE-I (Conceptua			d Up Your Understanding				
1.	Energy obtained by	a cell from catabolic	reaction is stored im	mediately in the form of				
	(1) Pyruvic acid	(2) Glucose	(3) ATP	(4) DNA				
2.	Which component o	f ETS is mobile carrie	er?					
	(1) UQ (CO-Q)	(2) Cyt- a	(3) Cyto- b	(4) Cyt- f				
•								
3.	-	e at the time of respira (2) Sugaraana		(A) Ground nut				
	(1) Starch	(2) Sugarcane	(3) Glucose	(4) Ground nut				
4.	Number of ATP pro	duced from one pyruv		version to acetyl Co-A -				
	(1) 6	(2) 3	(3) 12	(4) 15				
5.	(1) Succinic dehydro(2) Cytochrome oxid(3) Hexokinase by g	petitive inhibition of a ogenase by malonic ac dase by cyanide · ducose - 6 phosphate ase by carbon- dioxid	cid	ibition of :				
6.	Conversion of pyruvic acid into ethyl alcohol is mediated by -(1) Phosphatase(2) Dehydrogenase(3) Decarboxylase & dehydrogenase(4) Catalase							
7.	The formation of Acetyl Co-A from pyruvic acid is the result of its(1) Reduction(2) Dehydration(3) Phosphorylation(4) Oxidative decarboxylation							
8.	Which of the following is link between carbohydrate and fat metabolism ?(1) CO2(2) Acetyl Co-A(3) Pyruvic acid(4) Citric acid							
9.	Duruvata dahudraga	nasa complex is used	in converting					
7.	(1) Pyruvate to gluce	nase complex is used	(2) Glucose to p	vruvate				
	(3) Pyruvic acid to 1		(4) Pyruvate to a	•				
10.	The first member of (1) Oxalosuccinic ac (3) Citric acid	-	(2) Oxalo acetic(4) Cis aconitic					
11.	Excess of ATP inhib (1) Phosphofructoki (3) Aldolase (Lyases	nase	(2) Hexokinase (4) Pyruvate dec	earboxylase				
12.	End product of glyce (1) Citric acid (3) Phosphoglyceral		(2) Glyceraldeh (4) Pyruvic acid					

13.	 In the electron transport chain during terminal oxidation, the cytochrome, which electrons to O₂ is? (1) Cytochrome-b (2) Cytochrome-C 									
	(1) Cytochrome-b(3) Cytochrome-a₃	(2) Cytochrome-C(4) Cytochrome-f								
14.	Respiration in plants (1) Occurs only during day (3) Occurs both during day and night	(2) Results in the formation of vitamins(4) Often requires CO₂								
15.	The end products of respiration in plants ar (1) CO ₂ , H ₂ O and energy (3) Sulplar and oxygen	e (2) Starch and O ₂ (4) H ₂ O and energy								
16.	The incomplete breakdown of sugars in and (1) Fructose and water (3) Alcohol and CO ₂	aerobic respiration results in the formation of (2) Glucose and carbon dioxide (4) Water and CO ₂								
17.	Common immediate source of energy in ce (l) glucose (2) aldohexose	llular activity is (3) ATP (4) NAD								
18.	The following is required both by the proce (1) Carbohydrates (3) Chlorophyll	ess of respiration and photosynthesis (2) Sunlight (4) Cytochromes								
19.	The net gain of ATP molecules by glycolys(1) Zero(2) Two	(3) Four (4) Eight								
20.	Cytochromes are concerned with (1) Protein synthesis (3) Cell division	(2) Cellular digestion(4) Cell-respiration								
21.	In respiration pyruvic acid is (1) Formed only when oxygen is available (2) One of product of Krebs cycle (3) Broken down into Acetyl Co-A and CC									
	(4) Oxidised into Alcohol	2								
22.	Most of the energy of the carbohydrates is (1) Pyruvic acid is converted into CO ₂ and (2) Pyruvic acid is converted into acetyl Co (3) Sugar is converted into pyruvic acid (4) Glucose is converted into alcohol and C	H ₂ O D-A								
23.	Respiratory enzymes are localised in (1) Ribosomes (3) Mitochondria	(2) Chloroplast(4) None of the above								

|--|

				Eaubuii			
24.	molecule via malat	e aspartate shuttle.		n break down of one glucose			
	(1) 38	(2) 18	(3) 28	(4) 4			
25.	The organism in w	hich Kreb's cycle does i	not occur in mitochondi	ria is			
	(1) Yeast	(2) E.coli	(3) Ulothrix	(4) Plants			
26	What appear D.O.	to your?					
26.	What causes R.Q. (1) Respiratory Sul	-	(2) Light & O ₂				
	(3) Respiratory Pro		(4) Temperature				
27.	-	respiratory substrate is	(2) Ductains	(1) Dolymontido			
	(1) Glucose	(2) Fats	(3) Proteins	(4) Polypeptide			
28.	Respiration occurs	in					
		both in lights & dark					
	(2) Non green cells	s only in light s in both light and dark					
	(4) All living cells	-					
	() 6	8,					
29.	The value of RQ of	f starved cell is					
	(1) Zero (3) 1 / unity		(2) 0. 9 / Less than o (4) infinite	ne			
	(3) 1 / unity		(4) minite				
30.	RQ of an actively	photosynthesizing tissue	e is				
	(1) 1	(2) < 1	(3) > 1	(4) Zero			
31.	R O of germinatin	g ground nut & castor s	eed is				
011	(1) 1	(2) <1	(3) >1	(4) 0			
32.	-	f a ripening fatty seed is					
	(1) <1	(2)>1	(3) zero	(4) unity			
33.	When the evolution	n of CO_2 is more than the	he intake of O_2 , the resp	pired substrate should be			
	(1) Fatty add	(2) organic acid	(3) Glucose	(4) Polysaccharides			
24	Despiration may to	les place					
34.	Respiration may ta (1) In the presence	-	(2) In the absence of	$^{\circ}O_{2}$			
	(3) In the presence		(4) In the presence of				
a=							
35.	-	e between aerobic & and (2) Krab's cycle	-	(1) Dhoto respiration			
	(1) TCA cycle	(2) Kreb's cycle	(3) Glycolysis	(4) Photo respiration			
36.	The enzyme which	converts glucose to glu	cose-6-phosphate-				
	(1) Phosphorylase		(2) Gluco-phosphory				
	(3) Hexokinase		(4) Phospho glucom	utase			

37.	Glycolysis give rise (1) 8ATP, 2NADH((3) 2ATP, 2NADH(H ⁺), 2 Pyruvate	 (2) 2ATP, 2CoA, 2NADH(H⁺) (4) 2ATP, 2 acetate, 2NADH(H⁺) 					
38.	Which of the follow (1) Complex II	ing ETS complex is ir (2) Complex V	hibited by cyanide- (3) Complex IV	(4) Complex III				
39.	How many molecule (1) One	es of ATP are produce (2) Two	d per molecule of FAD (3) Three	DH ₂ oxidised? (4) Four				
40.	(2) Nicotinamide ad(3) Nicotinamide ad	DP is ne diphosphate phosp enosine dinucleotide p enine dinucleotide pho enine diophosphate ph	bhosphate osphate					
41.	or acetyl Co-A?	•		on of molecule of active acetate				
	(1) 38 ATP	(2) 15 ATP	(3) 12 ATP	(4) 4 ATP				
42.			by the oxidation of su					
	(1) 1 ATP	(2) 2 ATP	(3) 3 ATP	(4) 4 ATP				
43.	Product formed by th (1) Fumaric acid (3) Oxaloacetic acid	he activity of malic de	ehydrogenase is (2) Malic acid (4) Succinic acid					
44.	Which of the follow (1) Citric acid (3) Oxalosuccinic ac		ound of Kreb's cycle? (2) Fumaric acid (4) α-Ketoglutaric a	acid				
45.	First discovered Enz (1) Isomerase	yme was (2) Transaminase	(3) Zymase	(4) Transferase				
46.	Enzyme were discov (1) Bacteria	vered for the first time (2) Yeast	in (3) Algae	(4) Spinach				
47.	Who coined the term (1) Pasteur	n enzyme? (2) Buchner	(3) Kuhne	(4) Summer				
48.	Vitamin serves the f (1) An enzyme	unction of :- (2) A coenzyme	(3) A holoenzyme	(4) A hormone				
49.	Which of the follow (1) NAD	ing is a coenzyme? (2) NADP	(3) FAD	(4) All of above				

50. The first enzyme isolated in crystalline form was

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

	(1) Catalase	(2) Urease	(3) Peroxidase	(4) Amylase				
51.	In plants enzymes a (1) Only in flowers (3) All the living ce	-	(2) Only in leaves(4) Only in parenchyma					
52.	Which of the follow (1) NAD	ving coenzyme is a der (2) NADP	ivative of pantothenic (3) FAD	acid? (Vitamin-B complex)? (4) Co-A				
53.	Which of the follow (1) Hormone	ving is not consumed ir (2) Enzyme	n a biochemical process? (3) Vitamin (4) Nucleotide					
54.	(1) It becomes increase(2) It becomes decrease(3) It is first increase			a reaction?				
55.	Inhibition of succir (1) Competitive inh (3) Allosteric inhib	nibition	nalonate is an example of (2) Non competitive inhibition (4) Enzyme repression					
56.	Enzyme inhibition (1) Competitive (3) In competitive	caused by a substrate a	nalogue is (2) Non competitive (4) Semi- competitive					
57.	At boiling temperat (1) Denatured	ture an enzyme is (2) Unaffected	(3) Inactivated	(4) Killed				
58.	Enzyme have very (1) Light	narrow optima for :- (2) Temperature	(3) pH	(4) Humidity				
59.	Substrate level net (1) 8 ATP	gain of ATP molecules (2) 6 ATP	during complete oxic (3) 4 ATP	lation of 1 molecule of glucose- (4) 2 ATP				
60.	How many net A eukaryotes ? (1) 38 ATP	ATP generates in aero (2) 36 ATP	obic respiration via glycerol phosphate shuttle i (3) 40 ATP (4) 80 ATP					
61.	There is gain of hor (1) 28 ATP	w many ATP in aerobic (2) 36 ATP	c respiration of eukary (3) 20 ATP	votic cell ? (4) 40 ATP				
62.	Cyanide resistant re (1) Homo sapiens	espiration is found in - (2) Brassica	(3) Spinach	(4) Bacteria				
63.	SIP net gain of AT (1) 2 ATP	P from one molecule of (2) 6 ATP	f glucose during glyco (3) 36 ATP	olysis or EMP pathaway- (4) 38 ATP				

64.	Which enzyme is ch (1) Hexokinase	emically not a protein (2) Synthetase	? (3) Endonuclease	(4) Ribozyme					
65.	Which enzyme break (1) Hexokinase	t downs the fructose-1 (2) Phosphatase	, 6-Diphosphate ? (3) Aldolase	(4) None					
66.	Acceptor of acetyl C (1) Malic acid (3) α-ketoglutaric ac	'o-A in Kreb's cycle is id	(2) Fumaric acid (4) Oxalo acetic acid	1					
67.	Enzyme concerned w (1) Hydrolasase (3) Transaminase	with transfer of electron	ns are : (2) Dehydrogenase (4) Protease						
68.	Anaerobic respiratio (1) Ribosome	n takes place in : (2) Nucleus	(3) Cytoplasm	(4) Vacuole					
69.	During the formation (1) Yeast	n of bread, it becomes (2) Bacteria	poro <mark>us due t</mark> o release c (3) Virus	of CO ₂ by the action of :- (4) Protozoans					
70.	Allosteric enzymes h (1) Inhibition only (3) Reduction in acti	nave allosteric sites for vation energy	(2) Activation only (4) Both activation a	and inhibition					
71.	Substrate concentrat (1) Half life of enzyr (3) Concentration rat	xium velocity is ? enzyme							
72.	 In which one of the following do the two names refer to one and the same thing :- (1) Kreb's cycle and Calvin cycle (2) Tricarboxylic acid cycle and citric acid cycle (3) Citric acid cycle and Calvin cycle (4) Tricarboxylic acid cycle and urea cycle 								
73.	In alcohol fermentation :- (1) Triose phosphate is the electron donor, while acetaldehyde is the electron acceptor (2) Triose phosphate is the electron donor, while pyruvic acid is the electron acceptor (3) There is no electron donor (4) Oxygen is the electron acceptor								
74.	In glycolysis, during (1) Molecular oxyge (3) Glyceraldehyde	oxidation electrones a n	(2) ATP (4) NAD ⁺						
75.	During which stage	in the complete oxi	dation of glucose are	the greatest number of ATP					

75. During which stage in the complete oxidation of glucose are the greatest number of ATP molecules formed from ADP ?

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

- (1) Conversion of pyruric acid to acetyl Co A
- (2) Electron transport chain
- (3) Glycolysis
- (4) Krebs cycle
- 76. The deficiencies of micronutrients, not only affects growth of plants, but also vital functions such as photosynthetic and mitochondrial electron flow. Among the list given below, which group of three elements shall affect most, both photosynthetic and mitochondrial electron transport :
 - (1) Cu, Mn, Fe (4) Ca, K, Na (2) Co, Ni, Mo (3) Mn, Co, Ca
- 77. Chemiosmotic theory of ATP synthesis in the chloroplast and mitochondria is based on : (1) Proton gradient (2) Accumulation of K ions
 - (3) Accumulation of Na ions
- (4) Membrane potential
- 78. Which of the following statements regarding enzyme inhibition is correct?

(1) Non-competitive inhibition of an enzyme can be overcome by adding large amount of substrate

(2) Competitive inhibition is seen, when a substrate competes with an enzyme for binding to an inhibitor protein

(3) Competitive inhibition is seen, when the substrate and the inhibitor compete for the active site on the enzyme

(4) Non-competitive inhibitors often bind to the enzyme irreversibly.

- 79. The catalytic efficiency of two different enzyme can be compared by the :
 - (1) The Km value

- (2) The pH optimum value (4) Molecular size of the enzyme
- (3) Formation of the product
- 80. Which is the site of Kreb's cycle -(1) Chloroplast
 - (3) Mitochondria

- (2) Golgibody
- (4) Endoplasmic reticulum

ANSWER KEY

1.	(3)	2.	(1)	3.	(4)	4.	(2)	5.	(1)	6.	(3)	7.	(4)
8.	(2)	9.	(4)	10.	(2)	11.	(1)	12.	(4)	13.	(3)	14.	(3)
15.	(1)	16.	(3)	17.	(3)	18.	(4)	19.	(4)	20.	(4)	21.	(3)
22.	(1)	23.	(3)	24.	(1)	25.	(2)	26.	(1)	27.	(1)	28.	(1)
29.	(1)	30.	(1)	31.	(2)	32.	(2)	33.	(2)	34.	(3)	35.	(3)

Power by: VISIONet Info Solution Pvt. Ltd Mob no. : +91-9350679141 Website : www.edubull.com

												Edubull	
36.	(3)	37.	(3)	38.	(3)	39.	(2)	40.	(3)	41.	(3)	42.	(2)
43.	(3)	44.	(4)	45.	(3)	46.	(2)	47.	(3)	48.	(2)	49.	(4)
50.	(2)	51.	(3)	52.	(4)	53.	(2)	54.	(2)	55.	(1)	56.	(1)
57.	(1)	58.	(3)	59.	(3)	60.	(2)	61.	(2)	62.	(3)	63.	(1)
64.	(4)	65.	(3)	66.	(4)	67.	(2)	68.	(3)	69.	(1)	70.	(4)
71.	(2)	72.	(2)	73.	(1)	74.	(4)	75.	(2)	76.	(1)	77.	(1)
78.	(3)	79.	(1)	80.	(3)								