EXE	RCISE – I (Conceptual Questio	n)	Build Up your Understanding
	GE	ENETIC MATERIAL DNA	A
1.	Circular and double stranded D (1) Golgibody (2) Mitod	NA occurs in – chondria (3) Nucleus	(4) Cytoplasm
_			
2.	Double helix model of DNA with (1) C-DNA(2) B-DN		n and clock was of - (4) Z-DNA
3.	If there are 10,000 nitrogenous (1) 500 (2) 10,00	-	ow many nucleotides are there- (4) 40,000
4.	Double helix model of DNA is (1) Watson and crick (3) Singer and Nicholson	proposed by- (2) Schleiden (4) Kornberg a	
5.	Back bone in structure of DNA (1) Pentose sugar and phosphat (3) Purine and pyrimidine	-	gar and phosphate phosphate
6.	Substance common in DNA and (1) Hexose Sugar (2) Hista		(4) Phosphate groups
7.	Nucleotide is- (1) N_2 – base, pentose sugar and (2) Nitrogen, Hexose sugar and (3) Nitrogen base, pentose sugar (4) Nitrogen base, trioses and p	l phosphoric acid ur	
8.	Unit of nucleic acids are- (1) Phosphoric acid (2) Nitro	genous bases (3) Pentose Su	igar (4) Nucleotides
9.	Which element is not found in a (1) Nitrogen (2) Hydr	e	(4) Phosphorus
10.	DNA was first discovered by- (1) Meischer (2) Robe	rt Brows (3) Flemming	(4) Watson & Crick
11.	Nucleic acid (DNA) is not foun (1) Nucleus & nucleolus (3) Mitochondria & plastid	(2) Peroxyson	ne st & nucleosome
12.	DNA is not present in- (1) Mitochondria (2) Chlor	roplast (3) Bacterioph	nage (4) TMV

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

13.	A nucleic acid contain (1) DNA (3) Either DNA or RN	ns thymine or methylat NA	ted uracil then it should (2) RNA (4) RNA of bacteria	d be-
14.	Prokaryotic generic s (1) DNA & histones (3) Either DNA or his	-	(2) RNA & histones(4) DNA but no histo	nes
15.	nucleic acid is -	· · ·		s (or) building-block unit of
	(1) Nucleoside	(2) Polypeptide	(3) nucleotide	(4) Amino acid
16.	Which of the followin (1) Thymine	ng is not a pyrimidine (2) Cytosine	N ₂ base- (3) Guanine	(4) Uracil
17.	The purine & pyrimic (1) H-bonds	line pairs of compleme (2) O-bonds	ent <mark>ary stra</mark> nds of DNA (3 <mark>) C-bond</mark> s	are held together be- (4) N-bonds
18.	Number of H-bonds b (1) One	between guanine and cy (2) Two	ytosine are- (3) Three	(4) Four
19.	Whichpurine & pyrin (1) AC & GT	nidine bases are paired (2) GC & AT	together by H - bonds (3) GA & TC	in DNA- (4) None of the above
20.	A single stranded DN (1) TMV	IA is present in- (2) Salmonella	(3) \u03c6 x 174	(4) Bacteria
21.	What is the nature of (1) Identical & Comp (3) Dissimilar & non	-	A duplex- (2) Antiparallel & co (4) Antiparallel &nor	1 7
22.	On an average, how r (1) Four	nany purine N ₂ bases a (2) Five	re present in single co (3) Ten	il of DNA (4) Uncertain
23.	Distance between two (1) 0.34 nm	nucleotide pairs of D (2) 34 A^0	NA is- (3) 3.4 μ	(4) 34 nm
24.	In a double strand DN (1) 70%	NA amount of Guanine (2) 15%	is 35% then what will (3) 30%	be the amount of cytosine? (4) 35%
25.	Chargaaf 's rule is giv (1) Purines \neq Pyrimid (3) A + U = G + C		(2) $A + G = T + C$ (4) $A + T / G + C = c$	onst.

26.	In RNA , Nucleotides are bonded by – (1) H-bond (3) Ionic bonds	(2) Phospo diester bonds(4) Salt linkage
27.	A nucleoside differs from a nucleotide is n (1) Phosphate (3) Phosphate & sugar	ot having- (2) Sugar (4) Nitrogen base
28.	Wilkins X- ray diffraction showed the diam (1) 10 Å (2) 20 Å	neter of the DNA helix is- (3) 30 Å (4) 40 Å
29.	In the DNA of an animal percentage of Ad (1) 40 (2) 30	enine is 30 then percentage of Guanine will be - (3) 20 (4) 70
30.	Similarity in DNA and RNA- (1) Both are polymer of nucleotides (3) Both have similar sugar	 (2) Both have similar pyrimidine (4) Both are genetic material
31.	Length of one loop of B- DNA- (1) 3.4 nm (2) 0.34 nm	(3) 20 nm (4) 10 nm
32.	If base order in one chain of DNA is "AT duplex :- (1) 20 (2) 12	CGA" then how many no. of H-bond found in DNA (3) 10 (4) 11
33.	In DNA purine nitrogen bases are : (1) Uracil and Guanine (3) Adenine and cytosine	(2) Guanine and Adenine (4) None
34.	Two free ribonucleotide units are interlinke(1) Peptide bond(2) Disulphide bond	ed with: (3) Hydrogen bond (4) Phosphodiester bond
35.	Short DNA segment has 80 thymine and 90(1) 160(2) 40	0 guanine bases. The total number of nucleotides are (3) 80 (4) 340
36.	Prokaryotic DNA is :- (1) double stranded circular (3) double stranded linear	(2) single stranded circular(4) double stranded RNA as nucleic acid
37.	Nucleoside is:- (1) Polymer of nucleic acid (3) Phosphoric acid + sugar + base	(2) Phosphoric acid + base(4) Sugar + base
38.	The back bone of RNA is consists of which (1) Deoxyribose (2) Ribose	h of the following sugar:- (3) Sucrose (4) Maltose

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

39.	Retrovirus have gener (1) DNA only (3) DNA or RNA onl		(2) RNA only(4) None	
40.			n atom of pentose suga (3) Only 5 st carbon	r:- (4) Both 1 st and 5 th carbon
41.	DNA is acidic due to: (1) Sugar	- (2) Phosphoric acid	(3) Purine	(4) Pyrimidine
42.	T.M.V. contains:- (1) D.N.A.	(2) R.N.A. + Protein	(3) R.N.A. + D.N.A.	(4) D.N.A. + Protein
43.	R.N.A contains which (1) Thymine	n of the following base (2) Uracil	, in place of Thymine ((3) Adenine	of D.N.A. :- (4) None of these
44.	Genetic information a (1) DNA	are transferred from nu (2) RNA	cleus to cytoplasm of c (3) Lysosomes	cell through :- (4) ACTH
45.	If one strand of doul complementary seque (1) 5'-UAAGCAUG-3 (3) 5'-TAAGCATG-3	ence must be - 3'	(2) 3'-TAAGCATG-5	3'-ATTCGTAC-5', then the
46.	(1) DNA is chemicall(2) RNA mutate at a f(3) Guanyl transferase	ng is a false statements y less reactive, as com faster rate, as compared e enzyme helps in capp undant RNA in an anim	pared to RNA l to DNA ping process during spl	icing of hn-RNA
47.	(1) Double stranded(2) Presence of phosp(3) Specific base pair	niform diameter due to hate ing between purine and ing between purine and	l pyrimidine	
48.	Following structure is	s related to which com	pound?	
		H-N	N. N.	
	(1) Adenine	(2) Guanina	н (3) Uracil	(4) Thymine

			Eddisdii	
49.	If the sequence of bases in one strand of DNA is known then the sequence in other strand can			
	be predicted on the basis of- (1) Antiparallel (2) Complementary	(3) Polarity	(4) Coiling	
50.	50. The unequivocal proof that DNA is the genetic material came from the experim			
	(1) Hershey and chaese (1952)(2) Watten and Griek	(2) Frederic Griffi		
	(3) Watson and Crick	(4) Meselson and S	Stal (1958)	
	DNA REF	PLICATION		
51.	In process of replication deoxyribonucleos			
	(1) acting as substrate		gy for polymerisation reaction	
	(3) acting as an enzyme	(4) both (1) & (2)		
52.	DNA duplication occurs at			
	(1) Meiosis- II	(2) Mitotic interph	ase	
	(3) Mitosis only	(4) Meiosis and m		
53.	DNA Replication occurs at –			
	(1) $G_0 \& G_1$ (2) G_2 - stage	(3) S-Stage	(4) Mitotic phase	
51	A DNA malagula on which both strong to h	are a diagotive three	iding is allowed to duplicate in	
54.	A DNA molecule on which both strands h an environment containing non- radioact	•	1	
	DNA molecules that contains the radio acti			
	(1) One (2)Two	(3) Four	(4) Eight	
55.	A bacterium with completely radioactive	DNA was allowed to	o replicate in a non- radioactive	
	medium for two generation what% of the b	acteria should contai	in radioactive DNA :-	
	(1) 100% (2) 50%	(3) 25 %	(4) 12.5 %	
FC	In the horizontal of DN			
56.	In the base sequence of one strand of DN sequence of its complementary strand-	NA 18 GAT, TAG,	CAI, GAC what shall be the	
	(1) CAT, CTG, ATC, GTA	(2)GTA, ATC, CT	G GTA	
	(3) ATC, GTA, CTG, GTA	(4) CTA, ATC, G		
	(,,,,,,,	(), ,	,	
57.	Method of DNA replication in which tw	wo strands of DNA	separates and synthesize new	
	strands:-			
	(1) Dispersive (2) Conservative	(3) Semiconservat	ive (4) Non conservative	
50	During application of a basterial of	omo DNA	starta from a rachier still	
58.	During replication of a bacterial chromos	ome DNA synthesis	starts from a replication origin	
	site and (1) RNA primers are not involved	(2) is facilitated by	/ telomerase	
	(1) KNA primers are not involved (3) moves in one direction of the site	(4) moves in bi-di		
	(c) moves in one uncetton of the site		contain way	

59.	Which one of the following hydrolyses i chain-	nternal phosphodiester bonds in a polynucleotide
	(1) Lipase (2) Protease	(3) Exonuclease (4) Endonuclease
60.	The nature of DNA replication is:(1) Conservation(2) Non conservative	(3) Semi-consurvative(4) Cyanobacteria
61.	The direction of D.N.A. replication is : (1) From 5' end towards 3' end (3) Amino terminus to carboxy terminus	(2) From 3' end towards 5' end(4) Carboxy terminus to amino terminus
62.	Semiconservation replication of DNA was g (1) Watson and Crick (3) Messelson and Stahl	(2) Bateson and Punnett (4) Avery, McCarty and Mactleod
63.	Which of the following enzyme is used in D (1) RNA polymerase (3) Exonuclease	NA multiplication :- (2) DNA endonuclease (4) DNA Polymerase
64.	Mode of DNA replication in E. coli is : (1) Conservative and unidirectional (3) conservative and bidirectional	 (2) Semi conservative and unidirectional (4) Semi conservative and bidrectional
65.	Which of the following enzyme is used to jo(1) Terminase(2) Endonuclease	in DNA fragments: (3) Ligase (4) DNA polymerase
66.	Okazaki fragments are synthesised on :- (1) Leading strands of DNA only (3) Both leading and lagging strands of DNA	(2) Lagging strands of DNA only A(4) Complementary DNA
67.	DNA replication includes :- (1) DNA ligase (3) RNA polymerase and ligase	(2) DNA polymerase and ligase(4) All of these
68.	In DNA replication, the primer is :- (1) A small deoxyribonucleotide polymer (2) A small ribonucleotide polymer (3) Helix destabilizing protein (4) Enzyme taking part in joining nucleotide	es of new strand
69.	T he strand of DNA, which does not code fo (1) Template strand (3) Coding strand	or anything is referred to as :- (2) Antisense strand (4) Noncoding strand
70		

Edubull

70.During DNA replication discontinuosly synthesized fragments are later joined by the enzyme -
(1) Ligase(2) DNA polymerage
(3) RNA primer(4) Primase

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

- 71. Replication fork is-(1) Large opening of the DNA helix(3) Tightly coiled part of DNA helix
- (2) Small opening of the DNA helix

(4) Loosely coiled part of DNA helix

- 72. The DNA dependent DNA polymerase catalyse polymerisation in-(1) $3' \rightarrow 5'$ direction (2) $5' \rightarrow 3'$ direction (3) Depend on the nature of template strand (4) both (1) & (2)
- 73. Main enzyme of DNA replication is -(1) DNA dependent RNA polymerase(3) RNA dependent RNA polymerase

(2) DNA dependent DNA polymerase

(4) RNA dependent DNA polymerase

RNA, TRANSCRIPTION

74.	Y	Z	n fro <mark>m one s</mark> trand of D	NA into \underline{Y} is termed as \underline{Z} .
	(1) Transcription(2) RNA	RNA Transcription		
	(2) Id (1) (3) DNA	Translation		
	(4) Replication	RNA		
75.	Code in RNA corres	ponding to AGCT in I (2) UCGA	ONA- (3) TCGA	(4) AGUC
	(I) IACA	(2) 000A	(3) ICOA	(4) AUUC
76.	Which of the followi	ing is called adaptor m	olecule-	
	(1) DNA	(2) m-RNA	(3) t-RNA	(4) RNA
77.		ned with Adenine base		
	(1) Guanine	(2) Cytosine	(3) Uracil	(4) Thymine
78.				, CAT, GACwhatwould be the
	(1) GUA, GUA, CU	complementary m-RN	A (2) AUG, CUG, CU	C GUA CUG
	(1) GUA, GUA, COA, COA, COA, COA, COA, COA, COA, CO		(4) GUC, CUG, CU	· ·
79.	The process by which (1) Transcription	h DNA of the nucleus (2) Translocation	(3) Translation	ation to m-RNA is called- (4) Transportation
	(1) Hansenpuon	(2) Halislocation	(3) Translation	(4) Hallsportation
80.		e consecutive bases in on sequence in rn RNA		which specifically binds to a
	(1) Triplet	1	(2) Non - sense codo	on
	(3) Anti codon		(4) Termination code	on

Edubull

			Eddball
81.	t- RNA attach to larger subunit of ribosom	-	-
82.	(1) DHU –loop (2) T 'I' C loop In bacteria the codon AUG stands for -	(3) Anticodon loop	(4) Minor loop
02.	(1) Glycine	(2) Methionine	
	(3) N- formyl methionine	(4) Alanine	
83.	In three dimensional view the molecule of (1) L shared (2) S shared		(1) E shared
	(1) L-shaped (2) S-shaped	(3) Y- shaped	(4) E-shaped
84.	During transcription, the DNA site at which	ch RNA polymerase bin	ds is called :-
	(1) Promoter (2) Regulator	(3) Receptor	(4) Enhancer
07			
85.	During transcription, if the nucleotide s ATACG, then the nucleotide sequence in t	-	strand that is being coded is
	(1) TATGC (2) TCTGG	(3) UAUGC	(4) UATGC
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
86.	Which form of RNA has a structure resem		
	(1) rRNA (3) mRNA	(2) hnRNA	(4) tRNA
87.	Which one of the following makes use of	RNA as a template to s	vnthesize DNA-
07.	(1) DNA dependant RNA polymerase	(2) DNA polymerase	
	(3) Reverse transcriptase	(4) RNA polymerase	
00			1 /1 1 1 0
88.	cDNA probes are copied from the messen (1) Restriction enzymes	ger RNA molecules wit (2) Reverse transcrip	1
	(3) DNA polymerase	(4) Adenosine deam	
89.	The enzyme responsible for transc;ription		
	(1) D.N.A polymerase-1	(2) R.N.A. polymera	
	(3) Reverse transcriptase	(4) D.NA. polymera	se-111
90.	If the base sequence in DNA is 5' AAAA	3' then, the bases seque	nce in m-RNA is :-
	(1) 5' uuuu 3' (2) 3' uuuu 5'	(3) 5' AAAA 3'	(4) 3' TTTT 5'
01			
91.	Correct order of molecular weight is : (1) DNA< r-RNA < t-RNA	(2) DNA < m-RNA	r-RNA
	(1) $DNA < PRIVA < PRIVA (3) t-RNA < m-RNA <~DNA$	(4) t-RNA $<$ DNA $<$	
		(),	
92.	The genes are responsible for growth and		anism through regulation of:-
	(1) Translocation	(2) Transformation	• ,•
	(3) Transduction and translation	(4) Translation and t	ranscription
93.	Method by which information reaches from	m DNA to RNA is :-	
	(1) Transcription (2) Translation	(3) Transformation	(4) Transduction
٦.4	$\mathbf{D}\mathbf{N}\mathbf{A}$ \mathbf{A}		

94. DNA acts as a template for synthesis of

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

				Edubull
	(1) RNA	(2) DNA	(3) Both '1' and '2'	(4) Protein
5.	Which is soluble	RNA :-		
	(1) hnRNA	(2) rRNA	(3)mRNA	(4) tRNA
6.	Portion of gene v	which is transcribed but	not translated is :-	
01	(1) exon	(2) intron	(3) cistron	(4)coqon
_				
97.	The smallest RN (1) r-RNA	A 18 :- (2)m-RNA	(3) t-RNA	(4) nuclear RNA
	(1) I-KINA	(2)III-KINA	(3) t-KINA	(4) nuclear KIVA
98.	The most abunda	nt RNA of cell is :-		
	(1) r-RNA	(2) t-RNA	(3) m-RNA	(4) None of these
99.	One strand of D	NA (non template) has	s hase sequence CAG '	TCG, GAT. What will be th
	sequence of base		s base sequence erro,	red, orri. What will be u
	(1) AGC, CTA, $($		(<mark>2) GTC,</mark> AGC, CTC	2
	(3) CAG. UCG.	GAU	(4) GAC. TAG. CT	A
100.	Inverse transcrin	tion was discovered by:		
100.	(1) Watson and C	-	(2) Khorana	
	(3) Temin an Bal		(4) Meischer	
101.	01. Mature eucaryotic m-RNA is recognised by			
	 (1) Shine dalgarno sequence at 5' end (2) 7 -methyl guanosine at 5 'end and polyadenine bases at 3' end 			
	(3) Anti shine dalgarno sequence at 5' end			
		oding and noncoding se		
102	Turnerinting	A STA DNIA STA		
102.	Transcription uni	(2) Structural gene	(3) Terminator	(4) All
		(2) Structural gene		(4) All
103.	In DNA promote	r is the site for the initia	ation of	
	(1) Replication	(2) Translation	(3) Transcription	(4) Both (2) & (3)
104	Main anguma of	transprintion		
104.	Main enzyme of	ent DNA polymerase	(2) DNA dependent	RNA nolymerase
		ent RNA polymerase	(4) RNA dependent	
				1 2
105.		ns and joining of exons		(1) 11
	(1) Capping	(2) Tailing	(3) Splicing	(4) All
		GENETIC CO	DE. TRANSLATION	
06	A oodon in m DN	JA has		
106.	A codon in m-RN (1) 3-bases	NA has: (2) 2-bases	(3) 1-base	(4) Number of bases vary
	(1) 5-04868	(2) 2-0ases	(3) 1-0450	
owon b	y: VISIONet Info Solution	Pvt I td		

107.	A DNA strand is directly involved in the syn (1) Another DNA (2) t-RNA & m-RNA		ving except- (4) Protein
108.	Genetic code was discovered by (1) Nirenberg & Mathei (3) Khorana & Kornberg	(2) Kornberg & Crick(4) Gamow	:
109.	Genetic code was deciphered by chemically (1) Watson & Crick (3) Briggs & King	synthesizing the trinuc (2) Beadle & Tatum (4) M.W. Nirenberg	cleotides by-
110.	Nirenberg synthesized an m-RNA containin a polypeptide formed of 11 poly-lysine this (1) one-adenine (2) A-A doublet		
111.	64 Codons constitute genetic code because(1) There was 64 types of amino acid(3) Genetic code is triplet	(2) 64 types oft-RNA (4) There are 64 enzy	
112.	Which codon gives signal for the start of po (1) AUG (2) UGA	lypept <mark>ide (protein) c</mark> ha (3) GUA	in synthesis- (4) UAG
113.	The function of non-sense codons is- (1) To release polypeptide chain from t-RN. (2) To form an unspecified amino acid (3) To terminate the message of a gene cont (4) To convert a sense DNA into non sense	rolled protein synthesis	S-
114.	Termination of chain growth in protein synt (1) UUG, UGC, UCA (3) UM, UAG, UGA	hesis is brought about (2) UCG, GCG, ACC (4) UUG, UAG, UCC	
115.	Genetic code determines- (1) Structural pattern of an organism (3) Variation in offsprings	(2) Sequence of amin(4) constancy of morp	o acid in protein chain bhological trait
116.	m- RNA is attached with - (1) E.R. (2) Ribosome	(3) Nucleus	(4) Lysosome
117.	Sometimes the starting codon is GUG in pla (1) Valine (2) Glycine	ce of AUG, GUG norr (3) Methionine	nally stands for:- (4) Tyrosine

Which one of the following triplet codes, is correctly matched with its specificity for an aminoacid in protein synthesis or as 'start' or 'stop' codon:-118.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

- (1) UCG Start (2) UUU Stop (3) UGU-Leusine (4) UAC-Tyrosine
- 119. During translation initiation in prokaryotes, a GTP molecule is needed in :-
 - (1) Formation of formyl-met-tRNA
 - (2)Binding of 30S subunit of ribosome with mRNA
 - (3) Association of 30 5-mRNA with formyl-met tRNA
 - (4) Association of 50S subunit of ribosome with initiation complex
- 120. Degeneration of a genetic code is attributed to the:(1) First member of a codon
 (2) Second member of a codon
 (3) Entire codon
 (4) Third member of a codon
- 121. What would happen if in a gene encoding a polypeptide of 50 amino acids, 25th codon (UAU) is mutated to UAA :-
 - (1) A polypeptide of 24 amino acids will be formed
 - (2) Two polypeptides of 24 and 25 amino acids will be formed
 - (3) A polypeptide of 49 amino acids will be formed
 - (4) A polypeptide of 25 amino acids will be formed
- 122. A sequence of how many nucleotides in messenger RNA makes a codon for an amino acid? (1) Three (2) Four (3) One (4) Two
- 123. A strand of DNA has following base sequence 3'-AAAAGTGACTAGTGA-5'. On transcription, it produces an m-RNA which of the following anti codon oft-RNA recognizes the third codon of this mRNA :
 (1) AAA (2) CUG (3) GAC (4) CTG
- 124. Protein synthesis in an animal cell occurs-
 - (1) On ribosomes present in cytoplasm as well as in mitochondria
 - (2) On ribosomes present in the nucleolus as well as in cytoplasm
 - (3) Oniy on ribosomes attached to the nuclear envelope and endoplasmic reticulum
 - (4) Only on the ribosomes present in cytosol
- 125. Which one of the following statement is true for protein synthesis (translation) :
 - (1) Amino acids are directly recognized by m-RNA
 - (2) The third base of the codon is less specific
 - (3) Only one codon codes for an amino acid
 - (4) Everyt-RNA molerule has more than one amino acid attachment site
- 126. The drug streptomycin inhibits the process of:
 - (1) Prokaryotic translation
 - (3) Prokaryotic transcription
- (2) Eukaryotic translation
- (4) Eukaryotic transcription
- 127. Translation is the process in which:-(1) D.N.A. is formed on D.N.A template(3) D.N.A. is formed on R.N.A. template
- (2) R.N.A. is formed on D.N.A. template
- (4) Protein is formed from R.N.A. message

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

128.	In a polypeptide chain of 125 amino acids, if the 25 th amino acid is mutated to UAA, then :- (1) A polypeptide of 124 amino acid is formed (2) A polypeptide of 25 amino acid is formed (3) A polypeptide of 24 amino acid is formed (4) Any of the above can be possible		
129.	The first codon discovered by Nirenberg and (1) CCC (2) GGG	Mathii was :- (3) UUU	(4) AAA
130.		ranslation:- (2) Stopped at termin (4) Occurs in nucleus	
131.	,	(3) Anticodon	(4) Loop
132.		fferent amino acids. 7 (2) Non ambiguous n (4) Overlapping	_
133.	Anticodons are found in :- (1) m RNA (2) t RNA	(3) r RNA	(4) In all
134.		sed by (2) Jacob and Monod (4) Watson and Crick	
135.	How many ATP and GTP molecules are red acids in peptide chain ? (1) 20 ATP, 20 GTP (2) 25 ATP, 25 GTP		-
136.	Which of the following RNA play structural a (1) m-RNA(2) t-RNA	and catalytic role dur (3) r-RNA	ing translation. (4) All
137.	Transfer of genetic information from a polym(1) Replication(2) Transcription	ner of nucleotides to a (3) Translation	a polymer of amino acid is - (4) Reverse transcription
138.		(2) Polymerisation of(4) Polymerisation of	

139.	Khorana & his collegeous synthesized an RNA molecule with repeating sequences of UGN ₂ - bases. The RNA with "UGU GUG UGU GUG" produced a tetra peptide with alternating sequences of cystein and valine. This prove that codon for cystein & valine is (1) UGG, GUU (2) UUG, GGU (3) UGU & GUG (4) GUG & UGU		
	GENE REGULATION		
140.	Gene and cistron words are sometimes used synonymously because-(1) One cistron contains many genes(2) One gene contains many cistrons(3) One gene contains one cistron(4) One gene contains no cistron		
141.	A gene containing multiple exons and at least one -intron is termed as :- (1) split gene (2) operator gene (3) synthetic gene (4) epistatic gene		
142.	Gene which is responsible for the synthesis of a polypeptide chain is called :- (1) Promotor gene (2) Structural gene (3) Regulator gene (4) Operator gene		
143.	Which is true for tryptophan operon: (1) It is the example of inducible operon (3) on $\xrightarrow{co-repressor}$ off (2) It is example of repressible operon (4) (2) and (3) both are correct		
144.	Which is true for repressible operon :- (1) Off $_{\text{Inducer}}$ on (2) Inactive repressor + Co-repressor = active repressor (3) Active repressor + Inducer = inactive repressor (4) On $_{\text{Inducer}}$ off		
145.	What does "lac" refer to, in what we call the lac operon:- (1) Lactose(2) Lactase(3) Lac insect(4) The number 1,00,000		
146.	Which of the following is not produced by E.Coli in the lactose operon -(1) β galactosidase(2) Thiogalactoside transacetylase(3) Lactose dehydrogenase(4) Lactose permease		
147.	 A functional complex comprising a cluster of genes including structural gene, a promoter gene, an operator gene and a regulator gene was discovered by:- (1) Beadle and Tatum (1958) (2) Watson and crick (1953) (3) Jacob and Monad (1961) (4) Britten and Davidson (1961) 		
148.	Who explained the operon model for the first time(1) Francois Jacob(2) Jacques Monod(3) Francois Jacob and Jacques Monod(4) Beadle & Tatum		
149.	The accessibility of promotor regions of prokaryotic DNA by RNA polymerase is in many cases regulated by the interaction of some protein with sequences termed as- (1) Promoter (2) Operator (3) Regulator (4) Cistron		
	by: VISIONet Info Solution Pvt. Ltd re : www.edubull.com Mob no. : +91-9350679141		
website	e : www.edubull.com Mob no. : +91-9350679141		

150.	Regulation of lac ope (1) Positive regulation (3) Both (1) and (2)	ron by repressor is refe	erred to as- (2) Nagative regulatio (4) None	on
151.	 Which is incorrect (1) i-gene codes for the repressor of lac operon (2) z-gene codes for the beta-galactosidase (3) y-gene codes for transacetylase (4) three gene products are required for metabolism of lactose 			
152.				
153.	Find out the correct set (1) y, a, z	equence of structural g (2) a, z, y	en <mark>e in lac o</mark> peron (3) z, y, a	(4) z, a y
154.	The concept of sudde (1) Natural selection (3) Mutation	n genetic change which	h breeds true in an orga (2) Inheritance of acq (4) Independent assor	
155.	 Mutation is:- (1) An abrupt or discontinuous change which is inherited (2) A factor for plant growth (3) A change which affects parents only and is never inherited (4) A change which affects the offspring of F₂ generation 			
156.	The change of chromo (1) Crossing over/fran (3) Inversion	osomal parts between an association	non homologous pairs (2) Translocation (4) Transition	of chromosome :-
157.	(1) The halfing of the(2) The doubling of the	ng can be called a muta chromosome number ne chromosome after s an additional chromos	at meiosis yngamy	
158.	Mutations are general (1) Dominant	lly: (2) Recessive	(3) Codominant	(4) Incompeletely dominant
159.	Genetic mutations occ (1) DNA	cur in :- (2) RNA	(3) Protein	(4) RNA & protein both

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

160.	Which of the following undergoes change(1) Chromosome(2) Structure of getThe locus of mutation is :-	e in mutation:- ne (3) Sequence of gene (4) Any of the above	
161	The locus of mutation is :-		
161.	(1) Gene (2) Chromosome	(3) Centromere (4) Nucleus	
162.	In the octaploid wheat, the haploid (n) an $(1) n = 21, x = 7$ $(2) n = 28, x = 7$	d basic numbers (x) of chromosomes are :- (3) $n = 7 x = 28$ (4) $n = 7, x = 21$	
163.	Non-ionizing radiations commonly used (1) UV-rays (2) Beta-rays	for inducing mutations in organisms are :- (3) X-rays (4) Gamma-rays	
164.	The smallest unit of genetic material whit(1) Mutons(2) Recon	ch upon mutation produce a phenotypic effect is :- (3) Gene (4) Cistron	
165.	Ultimate source of genetic variation is evolution is:- (1) Sexual reproduction (3) Mutation	(OR) the process which provides raw material for(2) Meiosis(4) Independent assortment	
166.	Haploids are preferred over diploids for mutation studies because :- (1) Recessive mutation is expressed in F_1 (2) Recessive mutation is expressed in F_2 (3) Dominant phenotype is expressed (4) Dominant phenotype is suppressed		
167.	Type of gene mutation which involves(OR) The substitution of one type of base(1) Transduction(2) Transversion	replacement of purine with pyrimidine or vice versa with another type of base is:- (3) Translocation (4) Transcription	
168.	The minim1.1m requirement for mutation (1) Change of triplet codon (3) Change in whole DNA	n is : (2) Change in single nucleotide (4) Change in single strand of DNA	
169.	Mutations are:- (1) Always useful (2) Mostly useful	(3) Never useful (4) Rarely useful	
170.	Sickle cell anaemia is an example of : (1) Frame shift mutation (3) Segmental mutation	(2) Point mutation(4) Gibberish mutation	
171.	The most striking example of frame shift (1) Sickle cell anaemia (3) Laesh-Nyhn Syndrome	mutation was found in a disease called :- (2) Colour blindness (4) Thallesemia	
172.	A nutritionally wild type organism, which known as :- (1) Holotype (2) Auxotroph	a does not require any additional growth supplement is (3) Prototroph (4) Phenotype	

Power by: VISIONet Info Solution Pvt. Ltd		
Website : www.edubull.com	Mob no. : +91-9350679141	

Edubull

173.	Given below is the representation of a kind of chromosomal mutation : What is the kind of mutation represented A B C D E F G H A B C D E F G H		
	(1) deletion (2) duplication (3) inversion	(4) reciprocal Translocation	
175.	5.A class of mutation induced by addition or deletion of a nucleo (1) Missense(2) Non-sense(3) Substitution	tide is called (4) frame shift	
176.	 Chromosomes with genes abcdefg becoming abedcfg is: (1) duplication (2) deletion (3) translocation 	(4) inversion	
177.	(1) mutation in the genes of DNA (2) mutation in the	e phosphodiester linkage sequence of nitrogenous bases	
178.	78.Chromosome number 2n-1 is an example of (1) trisomy(2) euploidy(3) polyploidy	(4) monosomy	
179.	After a mutation at a genetic locus the character of an organism changes due to the change in(1) protein structure(2) DNA replication(3) protein synthesis pattern(4) RNA transcription pattern.		
DNA FINGER PRINTING, HUMAN GENOME PROJECT			
180.	DNA finger printing was invented by :- (1) Kary Mullis(2) Alec Jeffery(3) Dr. Paul Berg	(4) Francis Collins	
181.	Which one of the following pairs of terms/names mean one and the same thing(1) Gene pool – genome(2) Codon - gene(3) Cistron – triplet(4) DNA Fingerprinting - DNA profiling		
182.	Which step does not involve in DNA finger printing (1) Southern blotting(2) Gel electrophoresis (4) Northern blotting		
183.	such as nitrocellulose is known as	such as nitrocellulose is known as (1) Northern blotting (2) Southern blotting	
184.	4. Western blotting is used for the identification of:- (1) DNA (2) RNA (3) Protein	(4) All the above	

185.	Which of the foll polymorphism (RFL		e used in analyzing	restriction fragment length
		(b) Electroporation	(c) Methylation	(d) Restriction digestion
	(1) 'a' and 'c'	· · ·	(3) 'a' and 'd'	(4) 'b' and 'd'
186.	The approximate nu Kalpana Chawla wa	0	ed in the genome of Ka	alpana Chawla was genome of
	(1) 40,000	(2) 30,000	(3) 80,000	(4) 1,00,000
187.	The transfer of prote	in from electrophoretic	e gel to nitrocellulose r	nembrane is known as :-
	(1) transferase			(4) southern blotting
188. Which of the following is not associated with HGP		ith HGP		
	(1) Bioinformatics		(2) Cloning vectors I	BAC & YAC
	(3) Automated DNA	sequencers	(4) VNTR	
189.	• •	-		e satellite DNA forms
	(1) Major peak; Min	-	(2) Minor peak; Maj	-
	(3) Major peak; Maj	or peak	(4) Minor peak; Min	or peak
100	XX 71 · 1 · · · ·			
190.	-	rrect in DNA finger pr		
	(1) Isolation of DNA			A by DNA ligase enzyme
	(3) Separation of Dr	VA by electrophoresis	(4) Hybridisation usi	ing labelled VNTR probe
101	DNA fin comminting	mathad is your useful	for	
191.		method is very useful t entity & relation ships		
	(1) DINA lesis 101 Id	entity & relation ships	(2) Forensic studies	

(3) Polymorphism

(4) All of the above

Edubull

ANSWER KEY EXERCISE- () 1. (2)(2)3. (3) 4. (1)5. (1)6. (4) 7. (1) 2. 8. (4) 9. 12. 13. 14. (4) (4)10. (1)11. (2) (4)(1) 15. (3) 16. (3)17. (1)18. (3) 19. (2)20. (3) 21. (2) 22. 24. 25. (3)23. (1)(4) (2) 26. (2)27. (1)28. (2) (4) 29. (3) 30. (1) 31. (1)32. (2)33. (2)34. (4) 35. 39. (2) 36. (1)37. (4) 38. (2)(2)**40.** (3) 41. (2) 42. 43. (2)44. (2)45. (3) **46**. (4)47. (3) **48.** (3) 49. (2) 50. 51. 52. 53. 54. 55. (4) (1) (4) (4)(3) (2)(2) 56. 57. (3) 58. (4) 59. (4) 60. (3) 61. (1)62. (1)63. (4) **64**. (4)65. 67. **68**. **69**. 70. (1) (3) **66**. (2)(4) (2)(3) 72. 71. (2)73. 74. 75. (2)76. 77. (3) (2) (2)(2) (3) 78. 79. 80. 81. 82. 83. 84. (3) (1) (3) (2) (3) (1)(1)85. (3)86. (4) 87. (3)88. (2)89. (2)90. (3) 91. (3)

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

												Edubull	
92.	(4)	93.	(1)	94.	(3)	95.	(4)	96.	(2)	97.	(3)	98.	(1)
99.	(3)	100.	(3)	101.	(2)	102.	(4)	103.	(3)	104.	(2)	105.	(3)
106.	(1)	107.	(4)	108.	(1)	109.	(4)	110.	(3)	111.	(3)	112.	(1)
113.	(3)	114.	(3)	115.	(2)	116.	(2)	117.	(1)	118.	(4)	119.	(3)
120.	(4)	121.	(1)	122.	(1)	123.	(3)	124.	(1)	125.	(2)	126.	(1)
127.	(4)	128.	(3)	129.	(3)	130.	(4)	131.	(1)	132.	(1)	133.	(2)
134.	(1)	135.	(4)	136.	(3)	137.	(3)	138.	(4)	139.	(3)	140.	(3)
141.	(1)	142.	(2)	143.	(4)	144.	(2)	145.	(1)	146.	(3)	147.	(3)
148.	(3)	149.	(2)	150.	(2)	151.	(3)	152.	(4)	153.	(3)	154.	(3)
155.	(1)	156.	(2)	157.	(3)	158.	(2)	159.	(1)	160.	(4)	161.	(1)
162.	(2)	163.	(1)	164.	(1)	165.	(3)	166.	(1)	167.	(2)	168.	(2)
169.	(4)	170.	(2)	171.	(4)	172.	(3)	173.	(3)	174.	(1)	175.	(4)
176.	(4)	177.	(4)	178.	(4)	179.	(1)	180.	(2)	181.	(4)	182.	(4)
183.	(2)	184.	(3)	185.	(3)	186.	(2)	187.	(3)	188.	(4)	189.	(1)
190.	(2)	191.	(4)										