CLASS-11 JEE PHYSICS

Four Fundamental Forces

Q.1 Ten coins are placed on top of each other on a horizontal table. If the mass of each coin is 10 gm, what is the magnitude and direction of the force on the 7^{th} coin (counted from the bottom) due to all the coins above it? (Take $g = 10 \text{ m/s}^2$)

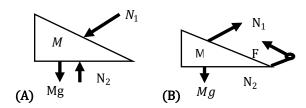
(A)0.3 N downwards

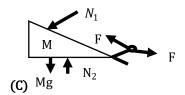
(B)0.3 N upwards

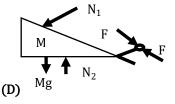
(C)0.7 N downwards

(D)0.7 N upwards

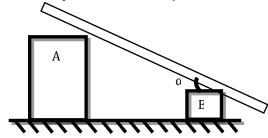
Free Body Diagram

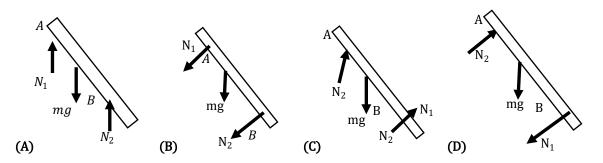

Q.2 A cylinder weighing 'W' is resting on a V-groove as shown in figure. How many forces should be shown in the FBD?

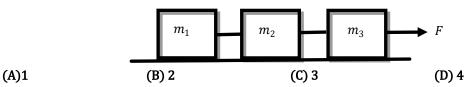



Free Body Diagram

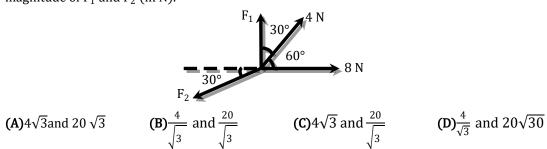
Q.3 The FBD of mass M in the figure shown is



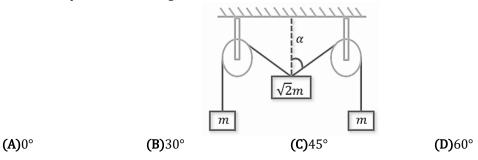



Q.4 For the figure shown, the FBD of the plank of mass m is (Given all surfaces are smooth)

CLASS-11 JEE PHYSICS

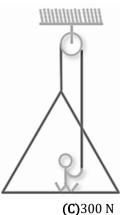


Q.5 How many external forces would appear to act on $(m_2 + m_3)$ if they are considered as a system and m_1 is considered as another system in the figure shown?



Equilibrium

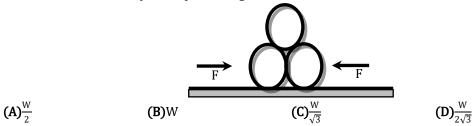
Q.6 An object is in equilibrium under four concurrent forces in the directions shown in figure. Find the magnitude of F_1 and F_2 (in N).



Q.7 The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle α should be

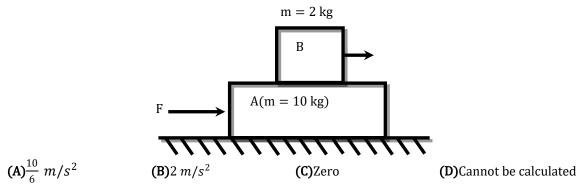
Q.8 A man of mass 50 kg stands on a frame of mass 30 kg. He pulls on a light rope which passes over a pulley. The other end of the rope is attached to the frame. For the system to be in equilibrium, what force must the man exert on the rope? (Take $g=10 \text{ m/s}^2$)

CLASS-11 **JEE PHYSICS**



(A)400 N

(B)800 N


(D)500 N

Q.9 Two smooth cylindrical bars weighing W each, lie next to each other in contact. A similar third bar is placed over the two bars as shown in figure. Neglecting friction, the minimum horizontal force on each lower bar necessary to keep them together is

Newton's Second Law

Q.10 In the figure a force F = 20 N is applied on block A. What would be the acceleration of the block B after 10 seconds from the start. Assume all surfaces are smooth.

CLASS-11 IEE PHYSICS

WORK SHEET

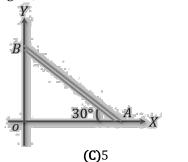
Inertia

Q.11 Which of Newton's Laws explains why satellites need very little fuel to stay in orbit?

(A)1stLaw **(B)**2ndLaw

(C)3ndLaw of conservation of mass

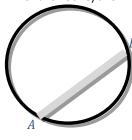
Newton's Third Law


Q.12 A man is at rest in the middle of a pond on perfectly smooth ice. He can get himself to the shore by making use of Newton's

(A)1st Law **(B)**2nd Law

(C)3ndLaw (D)All the three laws

WS_ Removed Question.

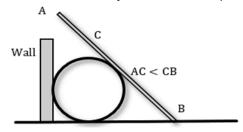

Q.13 A rod AB rests with the end A on rough horizontal ground, such that end A is prevented from sliding to the right. End *B* rests on smooth vertical wall. The rod is uniform and its weight is *W*. If the rod is in a stationary position as shown in figure, the number of forces acting in the FBD of rod is/are

(A)4 **(B)**6

(D)8

Q.14 A rod AB is placed inside a hollow spherical shell as shown in figure. A force acts between the rod and the shell to prevent the point B from sliding down and another force at A to prevent it from going up. The number of forces to be shown in FBD of the rod is/are

(A) 4


(B) 6

(C)5

(D)8

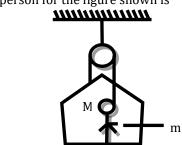
Free Body Diagram

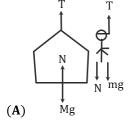
Q.15 A rod AB of weight W_1 is placed over a sphere of weight W_2 as shown in the figure. If friction is absent, the number of forces to be shown on the sphere in its FBD is/are?

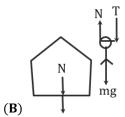
CLASS-11 IEE PHYSICS

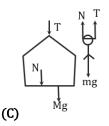
(A)3 **(B)**4 **(C)**5 **(D)**6

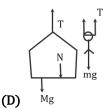
Q.16 Statements I: Block A is moving on the horizontal surface towards right under action of force F. All surfaces are smooth. At the instant shown, the force exerted by block A on block Bis equal to net force on block B.

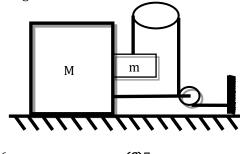

Statement II: From Newton's Third Law, the force exerted by Block A on Block B is equal in magnitude to force exerted by block B on A.




- (A) Both statements I and II are true and Statement II is correct explanation of Statement I.
- (B) Both Statements I and II are true but Statement II is not cirrect explanation of Statement I.
- (C) Statement I is true and Statemen II is false.
- (**D**) Statement I is false and Statement II is true.


Free Body Diagram


Q.17 The FBD of the frame and the person for the figure shown is

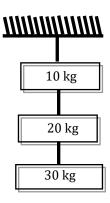


Free Body Diagram

Q.18 How many forces would be acting on M when its FBD is considered?

(A)5

(B)6


(C)7

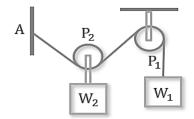
(D)8

CLASS-11 IEE PHYSICS

Free Body Diagram

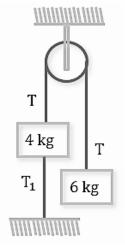
Q.19 If the 10 kg and 20 kg bodies are considered to be system 1 and 30 kg body is considered as system 2. The number of forces that would appear to be acting as external force for system 1 is ______.

Pulley


Q.20 In the figure the pulley P_1 is fixed and the pulley P_2 is movable. If $W_1 = W_2 = 100$ N,and the system is in equilibrium, what is the angle $\angle AP_2P_1$? (The pulleys are frictionless)

(A)30°

(B)60°


(C)90°

(D)120°

Tension in a String

Q.21 Two bodies of mass 4 kg and 6 kg are attached to the ends of a string passing over a pulley as shown in the figure below. The 4 kg mass is attached to the tabletop by another string. The tension in this string T_1 is equal to (take $g = 10 \text{ m/s}^2$)

(A)20 N

(B)25 N

(C) 10.6 N

(D)10 N

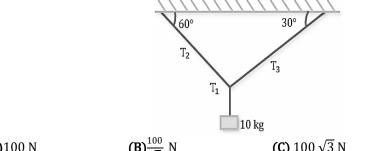
CLASS-11 **IEE PHYSICS**

Free body diagram

Q.22 Three light strings are connected at the point P. A weight W is suspended from one of the strings. End A of string AP and end B of string PB are fixed as shown. In equilibrium, PB is horizontal and PA makes an angle of 60° with the horizontal. If the tension in PB is 30 N, then the tension in PA and

weight W are respectively given by

(A)60 N, 30 N


(B)
$$\frac{60}{\sqrt{3}}$$
 N, $\frac{30}{\sqrt{3}}$ N

(C) 60 N,
$$30\sqrt{3}$$
 N

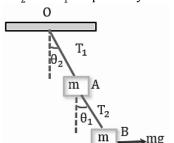
(D)
$$60\sqrt{3}$$
 N, $30\sqrt{3}$ N

Tension in a String

A block of mass 10 kg is suspended by three strings as shown in the figure. The tension T2 is (Take Q.23 $g = 10 \text{ m/s}^2$

(A)100 N

(B) $\frac{100}{\sqrt{3}}$ N

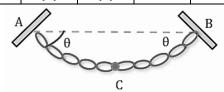

(C) $100 \sqrt{3} \text{ N}$

(D) $50\sqrt{3}$ N

Tension in a String

0.24 In the following figure the masses of the blocks A and B are same and each of equal to m. The tensions in the strings OA and AB are T2 and T1 respectively. The system is in equilibrium with a constant horizontal force mg on B. Then T₂ is

- (A) mg
- **(B)** $\sqrt{2}$ mg
- (C) $\sqrt{3}$ mg
- **(D)** $\sqrt{5}$ mg



Q.25 A flexible chain of mass m hangs between two fixed points A and B at the same level. The inclination of the chain with the horizontal at the two points of support is θ . The tension at the midpoint C of the chain is

- (A) $\frac{\text{mg}}{\tan \theta}$
- **(B)** $\frac{\text{mg}}{2\tan\theta}$
- (C) Zero
- **(D)**mg $\left(\frac{\sin\theta + \cos\theta}{2}\right)$

CLASS-11 JEE PHYSICS

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(A)	(C)	(C)	(D)	(D)	(B)	(C)	(A)	(D)	(C)
WORK SHEET										
Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(A)	(B)	(A)	(C)	(B)	(D)	(D)	(C)		(D)
Q.	11	12	13	14	15	16	17	18	19	20
Sol.	(A)	(C)	(D)	(D)	(B)					

ANSWER KEY