Chapter 12

Atom models

Exercise

Q.2The velocity of an electron in 2^{nd} orbit of double ionized sodium atom $(Z = 11)$ is v. The velocity of an electron in its fifth orbit will be (A)V(B) $\frac{5}{2}v$ (C) $\frac{2}{5}v$ (D) $\frac{22}{5}v$ Q.3The difference in angular momentum associated with the electron in the two successive orbits of a hydrogen atom is: (A) $\frac{h}{\pi}$ (B) $\frac{2h}{\pi}$ (C) $\frac{nh}{2\pi}$ (D) $\frac{h}{2\pi}$ Q.4In Rutherford scattering experiment, what will be scattering angle for αn a particle for animpact parameter b= 0? (A) 180°(B) 90°(C) 270°(D)0°Q.5The ratio of magnitude of energies of electron in first and second excited states of hydrogen atom is: (A) 11: 4(B) 4: 9(C) 9: 4(D) 4:Q.6How many times does the electron of hydrogen atom go around the first Bohr orbitin one second? [m = 9.1 × 10^{-31} kg, e = 1.6 × 10^{-19} C c 0 = 8.85 × 10^{-12} F m^{-1}, h = 6.6 × 10^{-34} J s] (A) 6.6 × 10^5(B) 6.6 × 10^{10}(C) 6.6 × 10^{13}(D) 6.6 × 10^{15}Q.7Determine the ratio of perimeter of 2 nd and 3 rd Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And Iliare their respective electronic angular momenta, and EH and EIi their respective energies, then (A) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H = L _H and E _H < [E _H] (C) L _H	Q.1	 What is the plum pudding model of the atom? (A)An atom is a ball of positive charge with negative electrons embedded in it. (B)An atom is a ball of negative charge with positive electrons embedded in it. (C) An atom is a ball of positive charge with negative neutrons embedded in it. (D)An atom is a ball of negative charge with negative neutrons embedded in it. 										
(A)V (B) $\frac{5}{2}$ V (C) $\frac{2}{5}$ V (D) $\frac{22}{5}$ V Q.3 The difference in angular momentum associated with the electron in the two successive orbits of a hydrogen atom is: (A) $\frac{h}{\pi}$ (B) $\frac{2h}{\pi}$ (C) $\frac{nh}{2\pi}$ (D) $\frac{h}{2\pi}$ Q.4 In Rutherford scatteringexperiment, what will be scattering angle for $\alpha n \alpha$ particle for animpact parameter b= 0? (A)180° (B)90° (C) 270° (D)0° Q.5 The ratio of magnitude of energies of electron in first and second excited states of hydrogen atom is: (A)1: 4 (B)4: 9 (C) 9: 4 (D)4: Q.6 How many times does the electron of hydrogen atom go around the first Bohr orbitin one second? [m = 9.1 × 10 ⁻³¹ kg e = 1.6 × 10 ⁻¹⁹ C $\epsilon 0$ = 8.85 × 10 ⁻¹² F m ⁻¹ , h = 6.6 × 10 ⁻³⁴ J s] (A)6.6 × 10 ⁵ (B)6.6 × 10 ¹⁰ (C) 6.6 × 10 ¹³ (D)6.6 × 10 ¹⁵ Q.7 Determine the ratio of perimeter of 2 nd and 3 rd Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8 A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And Iliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A)L _H = L_{H} and $E_{H} < E_{H} $ (B)L _H < L_{H} and $E_{H} < E_{H} $ (D)L _H < L_{H} and $E_{H} < E_{H} $	Q.2	The velocity of an electron in 2^{nd} orbit of double ionized sodium atom (Z = 11) is v. The velocity of an electron in its fifth orbit will be										
Q.3 The difference in angular momentum associated with the electron in the two successive orbits of a hydrogen atom is: (A) $\frac{h}{\pi}$ (B) $\frac{2h}{\pi}$ (C) $\frac{nh}{2\pi}$ (D) $\frac{h}{2\pi}$ Q.4 In Rutherford scatteringexperiment, what will be scattering angle for $\alpha n \alpha$ particle for animpact parameter b= 0? (A)180° (B)90° (C) 270° (D)0° Q.5 The ratio of magnitude of energies of electron in first and second excited states of hydrogen atom is: (A)1: 4 (B)4: 9 (C) 9: 4 (D)4: Q.6 How many times does the electron of hydrogen atom go around the first Bohr orbitin one second? [m = 9.1 × 10 ⁻³¹ kg, e = 1.6 × 10 ⁻¹⁹ C ε0 = 8.85 × 10 ⁻¹² F m ⁻¹ , h = 6.6 × 10 ⁻³⁴ J s] (A)6.6 × 10 ⁵ (B)6.6 × 10 ¹⁰ (C) 6.6 × 10 ¹³ (D)6.6 × 10 ¹⁵ Q.7 Determine the ratio of perimeter of 2 nd and 3 rd Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8 A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And Iliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A)L _H = l _{Li} and E _H < [E _H] (B)L _H < l _{Li} and E _H > [E _{Li}] (C)L _H = l _{Li} and E _H < [E _{Li}] (D)L _H < l _{Li} and E _H > [E _{Li}]		(A) V	$(B)\frac{5}{2}v$	(C) $\frac{2}{5}$ v	(D) $\frac{22}{5}$ v						
Q.4 In Rutherford scatteringexperiment, what will be scattering angle for $\alpha n \alpha$ particle for animpact parameter b = 0? (A) 180° (B) 90° (C) 270° (D) 0° Q.5 The ratio of magnitude of energies of electron in first and second excited states of hydrogen atom is: (A) 1: 4 (B) 4: 9 (C) 9: 4 (D) 4: Q.6 How many times does the electron of hydrogen atom go around the first Bohr orbitin one second? [$\mathbf{m} = 9.1 \times 10^{-31} \text{kg}, \mathbf{e} = 1.6 \times 10^{-19} \text{C} \mathbf{e0} = 8.85 \times 10^{-12} \text{F} \text{m}^{-1}, \mathbf{h} = 6.6 \times 10^{-34} \text{J} \text{s]}$ (A) 6.6 × 10 ⁵ (B) 6.6 × 10 ¹⁰ (C) 6.6 × 10 ¹³ (D) 6.6 × 10 ¹⁵ Q.7 Determine the ratio of perimeter of 2 nd and 3 rd Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8 A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And Iliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A) L _H = l _{Li} and E _H < [E _h] (B) L _H < l _{Li} and E _H > [E _{Li}] (C) L _H = l _{Li} and E _H > [E _{Li}] (C) L _H = l _{Li} and E _H > [E _{Li}]	Q.3	The difference in a hydrogen atom is: $(\mathbf{A})^{\underline{h}}$	ngular momentum as $(\mathbf{B})^{\underline{2h}}$	ssociated with the $(\mathbf{C})^{nh}_{\overline{\mathbf{C}}}$	e electron in the tw	The successive orbits of a $\mathbf{D} = \frac{h}{2}$						
Q.4 In Rutherford scatteringexperiment, what will be scattering angle for α n α particle for animpact parameter b = 0? (A)180° (B)90° (C) 270° (D)0° Q.5 The ratio of magnitude of energies of electron in first and second excited states of hydrogen atom is: (A)1:4 (B)4:9 (C) 9:4 (D)4: Q.6 How many times does the electron of hydrogen atom go around the first Bohr orbitin one second? [m = 9.1 × 10 ⁻³¹ kg, e = 1.6 × 10 ⁻¹⁹ C ϵ 0 = 8.85 × 10 ⁻¹² F m ⁻¹ , h = 6.6 × 10 ⁻³⁴ J s] (A)6.6 × 10 ⁵ (B)6.6 × 10 ¹⁰ (C) 6.6 × 10 ¹³ (D)6.6 × 10 ¹⁵ Q.7 Determine the ratio of perimeter of 2 nd and 3 rd Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8 A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And Iliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A)L _H = l _{Li} and E _H < [E _{Li}] (B)L _H < l _{Li} and E _H > [E _{Li}] (C)L _H = l _{Li} and E _H < [E _{Li}] (D)L _H < l _{Li} and E _H < [E _{Li}]		-ν _π	(-) π	2π		- 2π						
(A) 180° (B) 90° (C) 270° (D) 0° Q.5 The ratio of magnitude of energies of electron in first and second excited states of hydrogen atom is: (A) 1: 4 (B) 4: 9 (C) 9: 4 (D) 4: Q.6 How many times does the electron of hydrogen atom go around the first Bohr orbitin one second? $[m = 9.1 \times 10^{-31} \text{ kg}, e = 1.6 \times 10^{-19} \text{ C} \epsilon_0 = 8.85 \times 10^{-12} \text{ F} \text{ m}^{-1}, h = 6.6 \times 10^{-34} \text{ J} \text{ s}]$ (A) 6.6×10^5 (B) 6.6×10^{10} (C) 6.6×10^{13} (D) 6.6×10^{15} Q.7 Determine the ratio of perimeter of 2^{nd} and 3^{rd} Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8 A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And Iliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A) $L_{H} = l_{Li}$ and $E_{H} < E_{Ii} $ (B) $L_{H} < l_{Li}$ and $E_{H} > E_{Li} $ (C) $L_{H} = l_{Li}$ and $E_{H} > E_{Li} $ (D) $L_{H} < l_{Li}$ and $E_{H} > E_{Li} $	Q.4	In Rutherford scattering experiment, what will be scattering angle for $\alpha n \alpha$ particle for an impact parameter b= 0 ?										
Q.5The ratio of magnitude of energies of electron in first and second excited states of hydrogen atom is: (A)1: 4(B)4: 9(C) 9: 4(D)4:Q.6How many times does the electron of hydrogen atom go around the first Bohr orbitin one second? $[m = 9.1 \times 10^{-31} \text{ kg}, e = 1.6 \times 10^{-19} \text{ C } \epsilon 0 = 8.85 \times 10^{-12} \text{ F m}^{-1}, h = 6.6 \times 10^{-34} \text{ J s}]$ (A)6.6 × 10 ⁵ (B)6.6 × 10^{10}(C) 6.6 × 10^{13}(D)6.6 × 10^{15}Q.7Determine the ratio of perimeter of 2 nd and 3 rd Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And lliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A)L _H = l_{Li} and $E_{H} < E_{Li} $ (C)L _H = l_{Li} and $E_{H} < E_{Li} $ (D)L _H < l_{Li} and $E_{H} > E_{Li} $ (D)L _H < l_{Li} and $E_{H} < E_{Li} $		(A) 180° (B) 90°	(C) 270°	(D) 0°							
Q.6How many times does the electron of hydrogen atom go around the first Bohr orbitin one second? $[m = 9.1 \times 10^{-31} \text{ kg}, e = 1.6 \times 10^{-19} \text{ C} \ \epsilon 0 = 8.85 \times 10^{-12} \text{ F} \text{ m}^{-1}, h = 6.6 \times 10^{-34} \text{ J} \text{ s}]$ (A) 6.6×10^{5} (B) 6.6×10^{10} (C) 6.6×10^{13} (D) 6.6×10^{15} Q.7Determine the ratio of perimeter of 2^{nd} and 3^{rd} Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And Iliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A) L_H = I_{Li} and $E_H < E_{Li} $ (B) $L_H < I_{Li}$ and $E_H > E_{Li} $ (C) $L_H = I_{Li}$ and $E_H > E_{Li} $ (D) $L_H < I_{Li}$ and $E_H < E_{Li} $ (D) $L_H < I_{Li}$ and $E_H < E_{Li} $ (D	Q.5	The ratio of magnit (A) 1: 4	ude of energies of ele (B) 4: 9	ctron in first and s (C) 9: 4	second excited state (es of hydrogen atom is: D) 4:						
(A) 6.6×10^{5} (B) 6.6×10^{10} (C) 6.6×10^{13} (D) 6.6×10^{15} Q.7Determine the ratio of perimeter of 2^{nd} and 3^{rd} Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And Iliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A) L _H = l_{Li} and $E_H < E_{Li} $ (C) L _H = l_{Li} and $E_H > E_{Li} $ (C) L _H = l_{Li} and $E_H > E_{Li} $ (D) L _H < l_{Li} and $E_H < E_{Li} $	Q.6	How many times does the electron of hydrogen atom go around the first Bohr orbitin one second? $[m = 9.1 \times 10^{-31} \text{ kg}, e = 1.6 \times 10^{-19} \text{ C} \epsilon_0 = 8.85 \times 10^{-12} \text{ F} \text{ m}^{-1}, h = 6.6 \times 10^{-34} \text{ J} \text{ s}]$										
Q.7 Determine the ratio of perimeter of 2^{nd} and 3^{rd} Bohr orbit in He+ atom (Z = 2). (A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{16}{9}$ Q.8 A hydrogen atom and a Li++ ion are both in the second excited state. If IH. And Iliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A)L _H = l_{Li} and $E_H < E_{Li} $ (B)L _H < l_{Li} and $E_H > E_{Li} $ (C)L _H = l_{Li} and $E_H > E_{Li} $ (D)L _H < l_{Li} and $E_H < E_{Li} $		(A) 6.6 × 10 ⁵	(B) 6.6 × 10 ¹⁰	(C) 6.6	× 10 ¹³ (D) 6.6 × 10^{15}						
(A) $\frac{9}{4}$ (B) $\frac{9}{16}$ (C) $\frac{4}{9}$ (D) $\frac{10}{9}$ Q.8 A hydrogen atom and a Li++ ion are both in the second excited state. If lH. And lliare their respective electronic angular momenta, and EH and Eli their respective energies, then (A)L _H = l_{Li} and $E_{H} < E_{Li} $ (B)L _H < l_{Li} and $E_{H} > E_{Li} $ (C)L _H = l_{Li} and $E_{H} > E_{Li} $ (D)L _H < l_{Li} and $E_{H} < E_{Li} $	Q.7	Determine the ratio of perimeter of 2^{nd} and 3^{rd} Bohr orbit in He+ atom (Z = 2).										
Q.8 A hydrogen atom and a Li++ ion are both in the second excited state. If lH. And lli are their respective electronic angular momenta, and EH and Eli their respective energies, then (A) $L_H = l_{Li}$ and $E_H < E_{li} $ (B) $L_H < l_{Li}$ and $E_H > E_{Li} $ (C) $L_H = l_{Li}$ and $E_H > E_{Li} $ (D) $L_H < l_{Li}$ and $E_H < E_{Li} $		$(A)\frac{9}{4}$	$(B)\frac{9}{16}$	(C) $\frac{4}{9}$	(D) $\frac{16}{9}$						
	Q.8	A hydrogen atom and a Li++ ion are both in the second excited state. If lH. And lli are their respective electronic angular momenta, and EH and Eli their respective energies, then										
		(A) $L_H = I_{Li}$ and $E_H <$ (C) $L_H = I_{Li}$ and $E_H >$: E _{li} E _{li}	(B) L _H < l _{Li} and E (D) L _H <	(B) $L_{H} < I_{Li}$ and $E_{H} > E_{Li} $ (D) $L_{H} < I_{Li}$ and $E_{H} < E_{Li} $							

Q.9 The given diagram indicates the energy levels of a certain atom. When the system moves from 2*E* level to *E* level, a photon of wavelength λ is emitted. The wavelength of the photon emitted during its transition from $\frac{E4}{2}$ level to *E* level is.

Q.10 An energy of **24.6eV** is required to remove one of the electrons from the ground state of aneutral helium atom. The energy (in eV) required to remove both the electrons from the ground state of a neutral helium atom is

(A)79.0 e V (B)51.8 e V (C) 49.2 e V (D)38.2 eV

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(A)	(C)	(D)	(D)	(C)	(D)	(C)	(B)	(D)	(A)