Q.1	The absorptive power (A) $A \ge 1$	(a) can be – [Except for th (B) B > 1	ne black body] (C) C < 1	(D) None of these							
Q.2	The radiation pressure - (A)Depends on the nature of the surface on which it is falling. (B)Does not depend on the nature of the surface on which it is falling (C)Does not depend on the source. (D)None of these										
Q.3	If the absorptive powe (A) 0.3	er is 0 . 3 then for zero tran (B) 0.5	smissivity, the reflective j (C) 0.7	oower is - (D) 0.9							
Q.4	For a white body, the reflective power is -										
Q. 1	(A) 0.5	(B) 0.7	(C) 0.8	(D) 1.0							
Q.5	Electromagnetic wave of intensity 1400 W/m ² falls on metal surface on area 1 . 5 m ² and is completely absorbed by it. Find out the force exerted by the beam. (A) 14×10^{-5} N (B) 14×10^{-6} N (C) 7×10^{-5} N (D) 7×10^{-6} N										
Q.6		w flux of 25 × 10⁴ Wm [−] the area is 15 cm² , the aver (B)2.50 × 10 ^{−6} N	age force exerted on the s	eflecting surface at normal surface is : (D) 3.0 × 10 ⁻⁶ N							
Q.7	A parallel beam of monochromatic light is incident normally on a perfectly reflecting surface. Th incident radiation has the power as 2.1387×10^{-27} W. The force exerted by the light beam on th surface by each photon is ($h = 6.63 \times 10^{-34}$ Js)										
	(A) 2.21 × 10 ⁻¹⁹ N	(B) 1.4×10^{-19} N	(C) 3.3×10^{-24} N	(D) 6.6 × 10 ⁻²⁴ N							
Q.8	Light of intensity, I is incident perpendicularly on a perfectly reflecting plate of area A kept in a gravity-free space. If the photons strike the plate symmetrically and initially the spring was at its natural length, find the maximum compression in the springs.										
	$(\mathbf{A})\frac{2\mathbf{I}\mathbf{A}}{3\mathbf{K}\mathbf{c}}$	$(\mathbf{B})^{\underline{21A}}_{\underline{Kc}} \longrightarrow $		$(D)\frac{IA}{3Kc}$							

Q.9 If a photon of intensity I falls on a surface at an angle 60° making with it having absorption coefficient 0. 4, then radiation pressure exerted on the surface is-(A) $\frac{0.4I}{c}$ (B) $\frac{7I}{20c}$ (C) $\frac{1.05I}{c}$ (D) $\frac{1.2I}{c}$

Q.10 A light of intensity 8 kWm⁻² falls on a plane mirror with reflection coefficient $\mathbf{r} = 0.95$. The angle of incidence is 60°. The pressure exerted by the light on the mirror is (A) 1.3×10^{-5} Nm⁻² (B) 0.3×10^{-5} Nm⁻² (C) 30×10^{-5} Nm⁻² (D) 1.3×10^{-6} Nm⁻²

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(C)	(A)	(C)	(D)	(D)	(B)	(B)	(A)	(D)	(A)