Q.1	The wave and particle (A) The same time. (C) Both options (A) a	e nature of moving bodies and (B) are possible.	s can be observed at - (B) The different time (D) None of these	е.						
Q.2	Electron guns are use (A)Computer and tele (C)Ionize particles		(B) Ionize particles (D) All of these							
Q.3	Which of the following is NOT the possible angular orbital momentum of an electron? h is the Planck constant.									
	$(\mathbf{A})\frac{3h}{2\pi}$	$(\mathbf{B})\frac{5h}{2\pi}$	$(C)\frac{7h}{2\pi}$	$(\mathbf{D})\frac{8.5\mathrm{h}}{2\pi}$						
Q.4	Davisson-Germer experiment is performed first with X –rays of wavelength λ and then with electrons of same wavelength λ . The ratio of energy of X – rays to that of the electrons in of the order of (m = mass of electron)									
	(A) 1	(B) $2\left(\frac{\mathrm{mc}\lambda}{\mathrm{h}}\right)^2$	$(\mathbf{C})\frac{2\mathrm{mc}\lambda}{\mathrm{h}}$	$(\mathbf{D})\frac{\mathrm{mc}\lambda}{\mathrm{h}}$						
Q.5	The energy of a photon whose de-Broglie wavelength is equal to the wavelength of an electron accelerated through a potential difference of $125 V$ is near to									
	(A) 11.3 eV	(B) 11.3 keV	(C) 125 eV	(D) 1250 eV						
Q.6	Mass of an electron =	$9.1 imes10^{-31}$ kg	ravelling at a speed of 1 .							
	(A) 4.5×10^{-12} m	(B) 4.5×10^{-10} m	(C) 4.5 × 10 ^{−11} m	(D) 4.5×10^{-13} m						
Q.7	Calculate the de-Broglie wavelength of an electron having kinetic energy of 1 GeV . Given mass of electron $m = 9.1 \times 10^{-31}$ kg, $h = 6.6 \times 10^{-34}$ Js and $e = 1.6 \times 10^{-19}$ C									
			(C) $3.8 \times 10^{-14} \text{ m}$							
Q.8	A proton and an alpha particle are accelerating by the same potential difference. Find the ratio of their de-Broglie wavelength?									
	$(charge(q_{\alpha}) = +2e, q_{proton} = +e and m_{\alpha} = 4m_{proton})$									
	(A) √2	(B) √8	(C) √6	(D) √16						
Q.9	Find the ratio of de-Broglie wavelength of an α –particle to that of a proton. The proton is subjected to double the strength of the magnetic field that of α –particles so that the radii of their path are equal to each other. Assume the field induction \vec{B} perpendicular to the velocity vector of the α –particle.									
	(A) 1:1	(B) 1:2	(C) 1:3	(D) 1:4						
Q.10	one must be able to a electron energy requi	resolve a width of say 1) pm . If an electron-micr e wavelength of light use	er of 100 pm , this means that roscope is used, the minimum d in an electron microscope is						

(A)15 keV (B)1.5 keV (C)150 keV (D)1.5 MeV

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(B)	(D)	(D)	(C)	(B)	(A)	(C)	(B)	(A)	(A)