Chapter 9

Wave Optics

Exercise

Q.1 Two identical pulses whose centres are initially 16 cm apart are moving towards each other on a stretched string with same speed as shown in the figure. After 4 seconds, if the vertical displacement for resultant pulse is zero then the speed of pulses is

Q.2 Light waves from two coherent sources superimposes at a point. The waves at this point can be expressed as $y_1 = a \sin(10^{15}\pi t)$ and $y_2 = 2a \sin(10^{15}\pi t + \phi)$. Here all quantities are in SI units. Find the resultant amplitude (in m), and frequency (in Hz), of the resultant wave, if phase difference ϕ is equal to $\pi/3$.

(A) $a\sqrt{5}$, 5 × 10¹⁴

(B) $a\sqrt{7}$, 5 × 10¹⁴ **(C)** $a\sqrt{5}$, 10¹⁵

- **C)** $a\sqrt{5}$, 10^{15} **(D)** $a\sqrt{7}$, 10^{15}
- **Q.3** A travelling wave is having wavelength of 3 cm. At any instant, the two particles at a distance of 16.5 cm apart, will have a phase difference of (A)12 π (B)11 π (C)10 π (D)13 π
- Q.4 The amplitude of a wave represented by the displacement equation: $y = \frac{1}{\sqrt{a}} \sin \omega t \pm \frac{1}{\sqrt{b}} \cos \omega t \text{ will be,}$ (A) $\frac{a+b}{ab}$ (B) $\frac{\sqrt{a}+\sqrt{b}}{ab}$ (C) $\frac{\sqrt{a}\pm\sqrt{b}}{ab}$ (D) $\sqrt{\frac{a+b}{ab}}$

Q.5 Two sinusoidal waves are defined by the functions: $y_1 = (2.00 \text{ cm}) \sin(20x - 32t)$ and $y_2 = (2.00 \text{ cm}) \sin(25x - 40t)$ where y_1, y_2 and x are in centimeters and t is in seconds. What is the phase difference between these two waves at the point x = 5.00 cm at t = 2 s?

- **(A)**516° **(B)**258° **(C)**333° **(D)**412°
- **Q.6** Four independent waves are represented by the following equations:

$$X_1 = a_1 \operatorname{sin} \operatorname{Ewt} \dots (1)$$
$$X_2 = a_1 \operatorname{sin} \operatorname{Ewt} \dots (2)$$
$$X_3 = a_1 \operatorname{sin} \operatorname{Ew}_1 t \dots (3)$$
$$X_4 = a_1 \operatorname{sin} \operatorname{Ewt} + \delta) \dots (4)$$

Interference is possible between waves represented by the equations,

- (A)3 and 4 (B)1 and 2 (C)2 and 4 (D)1 and 4
- **Q.7** Two waves are passing through a region in the same direction and at the same time. If the equations of these waves are,

$$y_1 = a \sin \frac{2\pi}{\lambda} (vt - x), \text{ and}$$
$$y_2 = b \sin \frac{2\pi}{\lambda} (vt - x + x_0)$$
The amplitude of the resulting wave for $x_0 = \left(\frac{\lambda}{2}\right)$ is
(A) $|a - b|$ (B) $\sqrt{a^2 + b^2}$ (C) $a + b$ (D) $\sqrt{a^2 - b^2}$

Q.8 A wave given by equation $y = 8 \sin 2\pi (0.1x - 2t)$ where x and y are in centimeters and t is in seconds. At any instant, the phase difference between two particles, separated by 2.0 cm along the x-direction, is,

(A)
$$18^{\circ}$$
 (B) 36° **(C)** 54° **(D)** 72

Q.9 There is a destructive interference between the two waves of wavelength λ coming from two different paths at a point. To get the constructive interference at that point, the path of one wave is to be increased by,

$$(A)_{\frac{\lambda}{4}}^{\lambda} \qquad (B)_{\frac{\lambda}{4}}^{\lambda} \qquad (C)_{\frac{\lambda}{4}}^{\lambda} \qquad (D)_{\lambda}$$

Q.10 The equation of displacement of two waves are given as:

$$y_1 = 10 \sin \left(3\pi t + \frac{\pi}{3}\right), \text{ and}$$
$$y_2 = 5(\sin 5\pi t + \sqrt{3}\cos 5\pi t)$$

What is the ratio of their amplitudes?(C)1:1(D)None of the above(A)1:2(B)2:1(C)1:1

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(A)	(B)	(B)	(D)	(A)	(D)	(A)	(D)	(B)	(C)