- Q.1Two identical coherent waves each of intensity  $I_0$  are producing interference patterns. What is the<br/>value of resultant intensity at a point of destructive interference?<br/>(A) $4I_0$ (B) $I_0$ (C)0(D) $2I_0$
- **Q.2** In Young's double slit experiment, the intensity on the screen at a point where path differences is  $\lambda$  is K. What will be the intensity at the point where path difference is  $\frac{\lambda}{4}$ ?

(A)
$$\frac{K}{4}$$
 (B) $\frac{K}{2}$  (C)k (D)Zero

**Q.3** In YDSE, having slits of equal width, let  $\beta$  be the fringe width and  $I_0$  be the maximum intensity. At a distance *x* from the central bright fringe, the intensity will be



**Q.4** Light of wavelength 520 nm passing through a double slit, produces an interference pattern of relative intensity versus deflection angle  $\theta$  as shown in the figure. Find the separation d between the slits.



- Q.5 In a Young's double slit experiment, the path difference at a certain point on the screen between two interfering waves is 1/8<sup>th</sup> of wavelength. The ratio of the intensity at this point to that at the center of a bright fringe is close to

   (A)0.80
   (B)0.85
   (C)0.74
   (D)0.94
- **Q.6** A parallel beam of light of wavelength 500 nm is incident at an angle 30° with the normal to the slit plane in a Young's double slit experiment. The intensity due to each slit is  $I_0$ . Point O is equidistant from  $S_1$  and  $S_2$ . The distance between slits is 1 mm. Choose the correct statement.



**(C)**The intensity at 0 is  $2I_0$ .

- **(D)** The intensity at 0 is  $I_0/2$ .
- Q.7 A double slit of separation 0.1 mm is illuminated by white light. A colored interference pattern is formed on a screen 100 cm away. If a pinhole is located in this screen at a distance of 2 mm from the central fringe, the wavelengths in the visible spectrum (4000 Å to 7000 Å) which will be absent in the light transmitted through the pinhole is
   (A)4000 Å (B)5000 Å (C)6000 Å (D)7000 Å
- **Q.8** A Waves from coherent sources, having intensity  $I_0$  each, meet at point P. What is the resultant intensity of two waves at P, if the path difference between the waves is  $\frac{\lambda}{2}$ ?



- Q.9 Two waves of equal frequencies, have their amplitudes in the ratio of 4: 5. They are superimposed on each other. Calculate the ratio of maximum and minimum intensity of the resultant wave.
   (A)3:1 (B)9: 1 (C)27: 1 (D)81: 1
- **Q.10** Consider two coherent monochromatic sources  $S_1$  and  $S_2$ , each of wavelength  $\lambda$  and separated by a distance d. The ratio of the intensity of  $S_1$  and  $S_2$  is 4. A detector moves on the line perpendicular to  $S_1S_2$  as shown in the figure. If the resultant intensity at point P is equal to  $\frac{9}{4}$  times intensity of  $S_1$ , then the distance of P from  $S_1$  is, (Given:d > 0 and n is a positive integer)



## **ANSWER KEY**

| Q.   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Sol. | (C) | (B) | (C) | (B) | (B) | (B) | (A) | (A) | (D) | (A) |