Q.1	The magnetic field in a travelling electromagnetic wave has a peak value of 20 nT. The peak value of
	electric field strength is

- **(A)**12 V/m
- **(B)**3 V/m
- (C)6 V/m
- **(D)**9 V/m
- Q.2 The speed of an electromagnetic wave in a medium whose dielectric constant is 2.25 and relative permeability is 4, is equal to
 - **(A)** $0.5 \times 10^8 \text{ m/s}$
- **(B)** $0.25 \times 10^8 \text{ m/s}$
- (C) $0.75 \times 10^8 \text{ m/s}$
- **(D)** $1 \times 10^8 \text{ m/s}$
- Q.3 The electric and the magnetic field, associated with an **EM** wave, propagating along the +z-axis, can be represented by
- $(A)\vec{E} = E_0\hat{j}, \ \vec{B} = B_0\hat{k}$ $(B)\vec{E} = E_0\hat{i}, \ \vec{B} = B_0\hat{i}$ $(C)\vec{E} = E_0\hat{k}, \ \vec{B} = B_0\hat{i}$ $(D)\vec{E} = E_0\hat{i}, \ \vec{B} = B_0\hat{i}$
- If ϵ_0 and μ_0 are the electric permittivity and magnetic permeability in a free space, ϵ and μ are the Q.4 corresponding quantities in a medium, the index of refraction of the medium is,
 - (A) $\int_{\epsilon_0}^{\epsilon_0 \mu_0} \mu$
- (B) $\sqrt{\frac{\varepsilon \mu}{\varepsilon_0 \mu_0}}$ (C) $\sqrt{\frac{\varepsilon_0 \mu}{\varepsilon \mu_0}}$
- (D) $\sqrt{\frac{\varepsilon}{\varepsilon_0}}$
- A laser beam has intensity $2.5 \times 10^{14} \ Wm^{-2}$. The amplitudes of electric and magnetic fields in the Q.5 beam are:
 - **(A)** 1.44×10^8 N/C, 4.34 T

- (B)4.34 N/C, 1.44 T
- (C) 4.34×10^8 N/C, 1.44×10^{-2} T
- **(D)** 4.34×10^8 N/C, 1.44 T
- Q.6 During the propagation of electromagnetic waves in a medium
 - (A)Both electric and magnetic energy densities are zero.
 - **(B)**Electric energy density is double of the magnetic energy density.
 - **(C)**Electric energy density is half of the magnetic energy density.
 - **(D)**Electric energy density is equal to the magnetic energy density.
- Q.7 The rms value of the electric field of the light coming from the sun is 720 N/C. The average total energy density of the electromagnetic wave is,
 - **(A)** $3.3 \times 10^{-3} \text{ J/m}^3$

(C) $6.37 \times 10^{-9} \text{ J/m}^3$

- **(B)** $4.58 \times 10^{-6} \text{ J/m}^3$ **(D)** $81.35 \times 10^{-12} \text{ J/m}^3$
- A **27 mW** laser beam has a cross-sectional area of **10 mm²**. The magnitude of the maximum electric Q.8 field in this EM wave is given by [given permittivity of space $\varepsilon_0 = 9 \times 10^{-12} \text{ F/m}$, speed of light $c = 3 \times 10^8 \text{ m/s}$
 - (A)2 kV/m
- (B)0.7 kV/m
- **(C)**1 kV/m
- (D)1.4 kV/m

Q.9 Faraday's law of electromagnetic induction is given by,

$$\oint \vec{E}.\, \vec{dl} = -\frac{d\varphi_B}{dt}$$

Then

- **(A)**The electric field \vec{E} , in the given equation, is conservative.
- **(B)**The electric field \overrightarrow{E} , in the given equation, is non-conservative.

(C) Work done by the force due to the electric field \vec{E} , in the given equation, in moving a charge over a closed path is zero.

(D)None of these

Q.10 At the threshold of detection, an FM receiver can pick up a signal for which $E_0=2~\mu V/m$. The intensity of the electromagnetic wave is -

(A)
$$5.31 \times 10^{-15} \text{ W} - \text{m}^{-2}$$

(B)
$$5.31 \times 10^{-12} \text{ W} - \text{m}^{-2}$$

(C)
$$5.31 \times 10^{-14} \text{ W} - \text{m}^{-2}$$

(D)
$$5.31 \times 10^{-17} \text{ W} - \text{m}^{-2}$$

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(C)	(D)	(B)	(B)	(D)	(D)	(B)	(D)	(B)	(A)