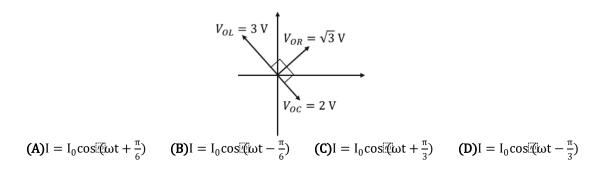
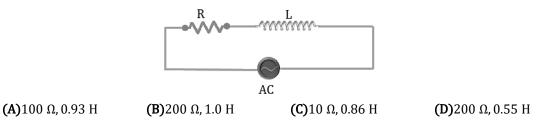
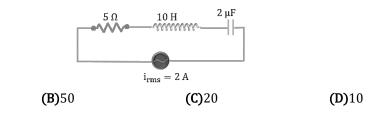

Q.1 A coil of resistance **300** Ω and inductance **1.0 H** is connected across an alternating voltage of frequency $\frac{300}{2\pi}$ Hz. Calculate the phase difference between the voltage and current in the circuit.


Q.2 A circuit contains a resistance **R** and an inductance **L** in series. An alternating voltage $V = V_0 \sin \omega t$ is applied across it. The currents in **R** and **L** respectively will be (I_0 is the peak current)


Q.3 An AC voltage $\varepsilon = 220 \sin(\omega t - \pi/6)$ is connected across a certain device. The current flowing through this device is $i = 115 \sin(\omega t + \pi/3)$. the correct phasor diagram, of applied voltage and current flowing in the circuit is.


- Q.4An inductive circuit contains resistance of 1 2 and an inductance of 2.0 H. If an AC voltage of 120 V
and frequency 60 Hz is applied to this circuit, the current would be nearly
(A)0.8 A(B)0.48 A(C)0.16 A(D)0.32 A
- **Q.5** The given figure represents the phasor diagram of a series LCR circuit connected to an AC source. At instant t when the source voltage is given by $V = V_0 \cos \omega t$, the current in the circuit in terms of peak current I_0 will be

Q.6 When **100 VDC** is applied across a solenoid, a current of **1 A** flows in it. When **100 VAC** is applied across the same coil, the current drops to **0.5 A**. If the frequency of the **AC** source is **50 Hz**, the impedance and inductance of the solenoid are

- Q.7 A 12 Ω resistance and an inductance of $\frac{0.05}{\pi}$ H with negligible resistance are connected in series. Across the ends of this circuit a 130 V alternating voltage of frequency 50 Hz is connected. Calculate the alternating current in the circuit and the potential difference across the resistance. (A)10 A, 50 V (B)10 A, 120 V (C)5 A, 50 V (D)10 A, 120 V
- **Q.8** In an **AC** circuit, the impedance is $\sqrt{3}$ times the**R**. Then, the phase angle is **(A)** $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ **(B)** $\cos^{-1}\left(\frac{1}{3}\right)$ **(C)** $\cos^{-1}\left(\frac{1}{2}\right)$ **(D)** $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$
- **Q.9** A capacitor $C = 2 \ \mu F$ and an inductor with $L = 10 \ H$ and coil resistance $5 \ \Omega$ are in series in a circuit. When an alternating current of **rms** value **2** A flows in the circuit, the average power (in **W**) in the circuit is

Q.10 In series LR circuit, $X_L = 3R$. Now a capacitor with $X_C = R$ is added in series. Ratio of new to old power factor is

(A)100

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(C)	(D)	(C)	(C)	(B)	(D)	(D)	(D)	(C)	(D)