- Q.1Hot wire ammeter is based on the principle of
(A)Faraday's Law
(C)Gauss's Law(B)Lenz's Law
(D)Joule's heating Effect
- Q.2In hot wire ammeter, when AC is passed, then the length of wire -
(A)Increases
(C)Remains Constant(B)Decreases
(D)First Decreases then increases
- Q.3A coil has negligible resistance and an inductive reactance of 20 Ω at50 Hz. If an AC source of 200 V
and 100 Hz frequency is connected across the coil, the rms current in the coil will be
(A)2.0 A(B)5.0 A(C)7.0 A(D)3.0 A
- Q.4 An inductor of inductance, L = 5 H is connected to an AC source having voltage, $V = 10sin(10t + \frac{\pi}{2})$. Find the inductive reactance.

- Q.5A capacitor of capacitive reactance, 12 Ω is connected with an AC source having voltage, V3sin($\omega t + \pi/6$). Find the expression of instantaneous current in the circuit.(A) 0.35sin($\omega t + 2\pi/3$)(B) 0.25sin($\omega t + 2\pi/3$)(C) 0.57sin($\omega t 2\pi/3$)(D) 0.15sin($\omega t 2\pi/3$)
- Q.6The reactance of a capacitor is 100Ω , when it is connected to a 100 Hz AC supply. What will be its
reactance, when it is connected to a 50 Hz AC supply?
(A) 200Ω (B) 100Ω (C) 300Ω (D) 400Ω
- **Q.7** An AC supply with constant peak voltage and variable frequency is applied across a capacitor of capacitance**C**. Which of the following graphs correctly depicts the variation of peak current (**i**) with angular frequency(**ω**)?

- Q.8A solenoid of inductance L = 1 H is connected across an AC supply of voltage, V = 100sin(20t). The
maximum energy stored in the solenoid is -
(A)25.5 J(B)12.5 J(C)15.5 J(D)17.5 J
- **Q.9** Match the following two columns for a series AC circuit.

Column I	Column II
a. Only C in the circuit	p. Current will lead
	^
b. Only L in the circuit	q. Voltage will lead
c. Only R in the circuit	r. φ = 90°
	s. $\phi = 0^{\circ}$

$$(\mathbf{A})^{\frac{2I_0}{\omega}} \qquad \qquad (\mathbf{B})^{\frac{I_0}{\sqrt{2}\,\omega}} \qquad \qquad (\mathbf{C})^{\frac{3I_0}{\sqrt{2}\,\omega}} \qquad \qquad (\mathbf{D})^{\frac{4I_0}{\omega}}$$

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(D)	(A)	(B)	(C)	(B)	(A)	(B)	(B)	(A)	(B)