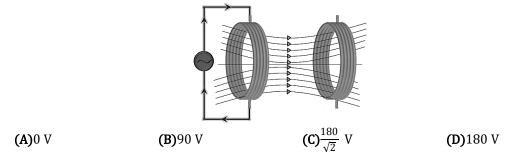
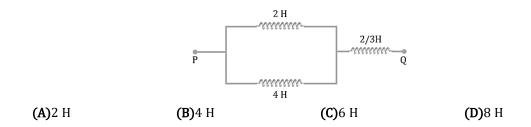
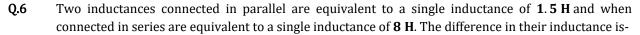
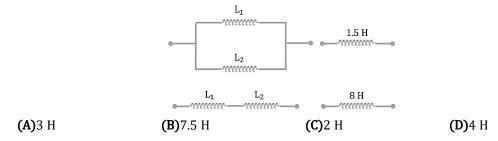
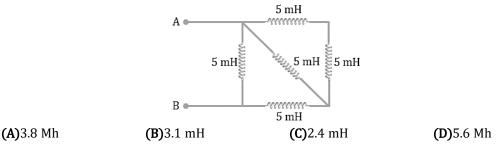

Q.1 Two coils **X** and **Y** are placed in a circuit such that when the current changes by **2 A** in coil **X** the magnetic flux changes by **0**. **4 Wb** in **Y**. The value of mutual inductance of the coils is-

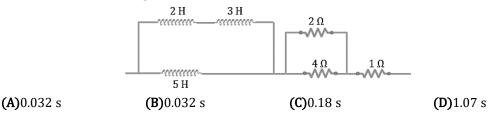

Q.2 A long straight wire carrying current **i** is placed along the axis of a circular ring of radius**R**. The mutual inductance of this system is


Q.3 Coil of **100** turns and having radius **1 cm** is kept co-axially within a long solenoid of **8** turns per **cm** with radius**5 cm**. Find the mutual inductance between the coil and solenoid-




Q.4 Two coaxial coils are very close to each other and their mutual inductance is**3** H. If a current $i_1 = 2\sin 30t A$ is passing through the first coil, then find the peak value of induced **emf** in the second coil.


Q.5 The equivalent inductance between points **P** and **Q** is



Q.7 Find the equivalent inductance in the combination given below between points **A** and **B**.

Q.8 The time constant of the given circuit is-

- Q.9If the voltage of a source in an AC circuit is represented by the equation, $\mathcal{E} = 220\sqrt{2}sin(314t)$. The
frequency of the voltage is –
(A)100 Hz(B)50 Hz(C)200 Hz(D)150 Hz
- Q.10If the voltage of a source in an AC circuit is represented by the equation, $\mathcal{E} = 220\sqrt{2}sin(314t)$.
Calculate the peak value of the current if the net resistance of the circuit is
220 Ω .
(A) 1.8 A(B) 1.6 A(C) 1.4 A(D) 1.2 A

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(A)	(D)	(D)	(D)	(A)	(D)	(B)	(D)	(B)	(C)