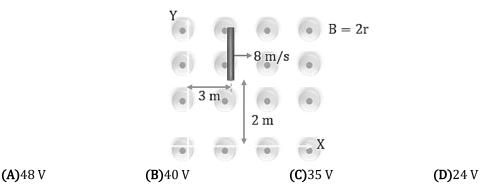
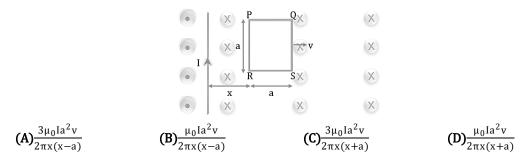

Q.1 A copper rod of length 1 m is moving at a uniform speed of 2.5 m/s parallel to a long straight wire carrying a current of 2 A as shown in the figure. Rod is perpendicular to the wire, with its ends at a distance of 1 m and 2 m from it. Calculate the emf induced (in volt) in the rod

Q.2 The given figure shows a conductor **OA** of length **l** placed along **y**-axis with one end at the origin. In this region, a non-uniform magnetic field exists having magnitude $\mathbf{B} = \mathbf{B}_0 \left(1 + \frac{y^2}{l^2}\right)$ along $+\mathbf{z}$ -direction. If the conductor **OA** starts translating with velocity $\vec{\mathbf{v}} = \mathbf{v}_0 \mathbf{\hat{i}}$, then find the emf induced in the conductor

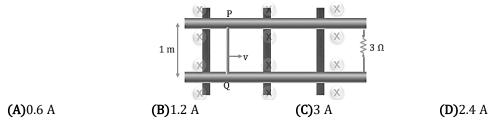
Q.3 A conducting rod PQ of length l = 1.0 m is moving with a uniform speed v = 20 m/s in a uniform magnetic field B = 4.0 T directed into the paper. A capacitor of capacity $C = 10 \mu F$ is connected as shown in figure. Then


(A) $q_A = +800 \ \mu C \ And \ q_B = -800 \ \mu C$ (B) $q_A = -800 \ \mu C \ And \ q_B = +800 \ \mu C$ (C) $q_A = q_B = 0$

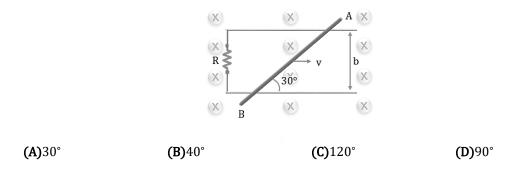
(D)The charged stored in the capacitor increases exponentially with time


Q.4 A rod of length 3 m is kept parallel to a long wire carrying constant current 0. 5 A.It is moving away from the wire with a velocity of 10 m/s. Find the induced emf in the rod when its distance from the long wire is 0. 15 m

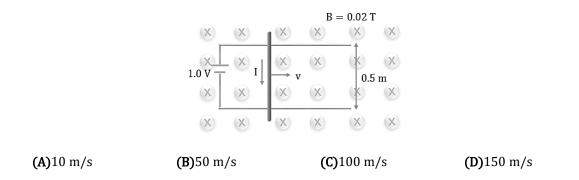
(A) 3×10^{-3} V (B) 2×10^{-6} V (C) 5×10^{-4} V (D) 2×10^{-5} V


Q.5 The magnetic field in a region is given by $\mathbf{B} = 2\mathbf{r}$, where \mathbf{r} is the perpendicular distance from the $\mathbf{x} - \mathbf{axis}$. The direction of the magnetic field is along the positive $\mathbf{z} - \mathbf{axis}$. A conducting rod of length $\mathbf{1}$ m lies parallel to the $\mathbf{y} - \mathbf{axis}$ as shown in the figure. If the rod moves with the velocity $\mathbf{v} = \mathbf{8}$ m/s along the positive $-\mathbf{axis}$, find the emf induced between the ends of the rod.

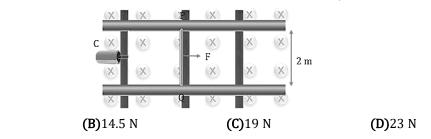
Q.6 An infinite wire having current **I** is kept on the plane of paper. Find the **EMF** induced in the square metal loop at the instant when it moves with speed **v** in the same plane of the wire, in the direction as shown in the figure.



Q.7 The wire **PQ** has mass **0.5 kg** and resistance **2** Ω can slide on the smooth, very long horizontal parallel rails separated by a distance of **1 m**. The resistance of the rails is negligible. A uniform magnetic field of magnitude **0.6 T** exists in the rectangular region, and a resistance **3** Ω connects the rails outside the field region. At **t** = **0**, the wire **PQ** is pushed towards the right with a speed **v** = **5 m/s**. Find the current in the loop at an instant when the speed of the wire **PQ** is **5 m/s**.



Q.8 A wire is sliding as shown in the figure. The angle between the acceleration and the velocity of the wire is:


(A)7 N

Q.9 Two long parallel wires, having zero resistance, are connected to each other by a battery of 1.0 V. The separation between the wires is 0.5 m. A metallic bar of resistance10 Ω, placed perpendicular to the wires, moves on these wires. A uniform magnetic field of 0.02 T is acting perpendicular to the plane containing the bar and the wires. Find the steady-state velocity of the bar.

Q.10 A conducting wire PQ of mass 1.8 kg and length 2 m can freely slide on a pair of parallel, smooth rails placed in a magnetic field of magnitude1 T. The rails are connected by a capacitor of capacitance0.5 F. The electric resistance of the rails and wire is zero. A constant force F acts on the wire as shown. Find the value of F if the acceleration of the wire is 5 m/s².

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(A)	(C)	(A)	(D)	(B)	(D)	(A)	(C)	(C)	(C)