Chapter 4

Magnetism

Exercise

Q.1 In a region, a uniform electric field is present as $\vec{E} = E_0 \hat{j}$ and a uniform magnetic field is present as $\vec{B} = -B_0 \hat{k}$. An electron is released from rest at origin. Which of the following best represents the path followed by an electron after release.

Q.3 A beam of electrons passes, undeflected through mutually perpendicular electric and magnetic fields. If the electric field is switched off, and the same magnetic field is maintained, the electrons move.

Q.6 A particle having *m* and charge *q* which is initially at rest is released from the origin in a region in which electric and magnetic fields are given by $\vec{B} = B_0 \hat{j}$ and $\vec{E} = E_0 \hat{k}$. Find the speed of the particle as a function of its *z* –coordinate.

Q.7 A charged particle of mass m and charge q is projected on a rough horizontal xy-plane surface with z-axis in the vertically upward direction. Both electric and magnetic fields are acting in the region given by $\vec{E} = -E_0 \hat{k}$ and $\vec{B} = -B_0 \hat{k}$ respectively. The particle enters the field at (a, 0,0) with velocity $\vec{v} = v_0 \hat{j}$. The particle starts moving into a circular path on the plane. If the coefficient of friction between the particle and the plane is μ .

Then calculate the time when the particle will come to rest?

$$(A)\frac{2mv_0}{\mu(mg+qE_0)} \qquad (B)\frac{mv_0}{\mu(mg+qE_0)} \qquad (C)\frac{3mv_0}{\mu(mg+qE_0)} \qquad (D)\frac{4mv_0}{\mu(mg+qE_0)}$$

Q.8 A charged particle of mass m and charge q is projected on a rough horizontal xy-plane surface with z-axis in the vertically upward direction. Both electric and magnetic fields are acting in the region is given by $\vec{E} = -E_0 \hat{k}$ and $\vec{B} = -B_0 \hat{k}$ respectively. The particle enters the field at (a, 0,0) with velocity \vec{v} = v_0 ¹. The particle starts moving into a circular path on the plane. If the coefficient of friction between the particle and the plane is

 μ then calculate the distance travelled by the particle before it comes to rest.

Q.9 A particle of charge q and mass m starts moving from the origin under the action of electric field $\vec{E} = E_0 \hat{i}$ and $\vec{B} = B_0 \hat{i}$ with velocity $\vec{V} = V_0 \hat{j}$. The speed of the particle will become $2V_0$ after a time: (A)t = $\frac{2mV_0}{qE}$ (B)t = $\frac{2Bq}{mV_0}$ (C)t = $\frac{\sqrt{3}Bq}{mV_0}$ (D)t = $\frac{\sqrt{3}mV_0}{qE}$ $(\mathbf{A})\mathbf{t} = \frac{2mV_0}{qE}$

Q.10 A particle of specific charge (charge/mass) α starts moving from the origin from rest under the action of an electric field $\vec{E} = E_0$ î and magnetic field $\vec{B} = B_0$ k̂. Its velocity at $(x_0, y_0, 0)$ is $(4\hat{i} - 3\hat{j})$. The value of x_0 is: (All parameters are in SI units). 5α 2Βο

(A)
$$\frac{13 \alpha E_0}{2B_0}$$
 (B) $\frac{16 \alpha B_0}{E_0}$ (C) $\frac{25}{2 \alpha E_0}$ (D) $\frac{5}{2}$

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(C)	(B)	(A)	(A)	(D)	(D)	(B)	(D)	(D)	(C)

ANSWER KEY