Q.1 In the circuit shown, the resistance of the voltmeter is 10,000 Ω and that of the ammeter is 20 Ω.The ammeter reading is 0.10 A and voltmeter reading is 12 V. Then value of R is equal to

(A) 122 Ω
 (B) 140 Ω
 (C) 116 Ω
 (D) 100 Ω
 (C) 116 Ω
 (D) 100 Ω

Q.2 A voltmeter has a resistance of **G** Ω and range**V volt**. The value of resistance used in series to convert it into voltmeter of range **nV volt** is

(A)nG (B)(n-1)G (C) $\frac{G}{n}$ (D) $\frac{G}{n-1}$

Q.3 Three voltmeters are connected as shown.
A potential difference has been applied across A and
B. On closing the switchS, what will be the effect on
The readings of voltmeters?
(A)V₁ Increases

(B)V₂ Decreases

(C) V_2 And V_3 both increase

(D)One of V₂ and V₃ increases and the other decreases

Q.4 The deflection in a moving coil galvanometer falls from 50 divisions to 10 divisions when a shunt of 12 Ω is connected with it. The resistance of galvanometer coil is?
 (1)24 Ω
 (1)24 Ω
 (1)24 Ω
 (1)24 Ω

Q.5 A galvanometer of resistance **95** Ω shunted by a resistance of **5** Ω gives a deflection of 50 divisions when joined in series with a resistance of **20** k Ω and a**2** V accumulator. What is the current sensitivity of the galvanometer in $\frac{\text{div}}{\text{u}\Lambda}$?

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{6}$ (D) $\frac{1}{8}$

Q.6 Which of the following wiring diagrams could be used to experimentally determine **R** using ohm's law? Assume an ideal voltmeter and an ideal ammeter.

Q.7 Find potential difference across the resistance 300 Ω given in circuit AandB.
(A)60 V And50 V (B)70 V and 70 V (C)30 V and 30 V (D)40 V and 30 V

Q.8In a meter bridge experiment, null point is obtained at **20 cm** from one end of the wire when
resistance **x** is balanced against resistance **y**. If $\mathbf{x} < y$, then where will be the new position of the null
point from the same end, if one decides to balance a resistance of $4\mathbf{x}$ against \mathbf{y} ?
(A)50 cm(B)80 cm(C)40 cm(D)700 cm

Q.9 In the figure shown for given values of **R1** and **R2** the balance point for jockey is at **40 cm** from**A**. When **R2** is shunted by a resistance of **10** Ω , balance shifts to **50 cm**. **R1** And **R2** are [**AB** = **1 m**]

Q.10 In a practical meter bridge setup, resistance and null point are as shown. Assuming end correction at **A** and **B** are equal, calculate end correction at**A**.

±Γ

WORKSHEET

Velocity in 2D

Q.1 A hollow vertical cylinder of radius **R** and height **h** has a smooth internal surface. A small particle is placed in contact with the inner side of the upper rim at a point**P**. It is given a horizontal speed v_0 tangential to the rim. It leaves the lower rim at point**Q**, vertically below**P**. The number of revolutions made by the particle will be

$$(\mathbf{A})\frac{h}{2\pi R} \qquad \qquad (\mathbf{B})\frac{v_0}{\sqrt{2gh}} \qquad \qquad (\mathbf{C})\frac{2\pi R}{h} \qquad \qquad (\mathbf{D})\frac{v_0}{2\pi R} \left(\sqrt{\frac{2h}{g}}\right)$$

Angular Velocity

Q.2 A ball is placed on a smooth inclined plane of inclination $\theta = 30^{\circ}$ to the horizontal, the inclined plane is rotating at frequency **0**. **5** Hz about a vertical axis passing through its lower end. At what distance from the lower end does the ball remains at rest?

Block on a Block Problems

Q.3 In the arrangement shown in the figure, the wall is smooth and the coefficient of static friction between the blocks is $\mu = 0.1$. A horizontal force F = 1000 N is applied on the 2 kg block. Identify the wrong statement from the options given below:

(A)The normal reaction force between the blocks is 1000 N

(B) The friction force between the blocks is zero

(C)Both the blocks accelerate downwards with acceleration g

(D)Friction force acting on 2 kg block is 2g N

Relative Velocity in 2D

Q.4 Two cars A and B are moving west to east and south to north respectively along crossroads. A Moves with a speed of **72** kmh⁻¹ and is **500** m away from point of intersection of crossroads and B moves with a speed of **54** kmh⁻¹ and is **400** m away from point of intersection of crossroads. Find the shortest distance between them in meters?

Work Energy Theorem

Q.5 A vertical frictionless semicircular track of radius **1 m** is fixed on the edge of a movable trolley (figure). Initially the system is at rest and a mass **m** is kept at the top of the track. The trolley starts moving to the right with a uniform horizontal acceleration $\mathbf{a} = \frac{2\mathbf{g}}{9}$. The mass slides down the track, eventually losing contact with it and dropping onto the floor. Calculate the angle $\boldsymbol{\theta}$ at which it loses contact with the trolley and the track. **(A)**30° **(B)**37° **(C)**53° **(D)**60°

Electric Field Due to a Ring along the Axis

Q.6For the given uniformly charged ring, magnitude of the net electric field at point P is (inN/C
(A)21 N/C(B)24 N/C(C)26 N/C(D)28 N/C

Electric Field

- Q.7 A particle of mass m and charge -q is projected from the origin with a horizontal speed v into a space having an electric field of magnitude E directed downwards as shown in the figure. If the effect due to gravity can be neglected, then choose the correct statement(s) among the following.
 (A) The kinetic energy after a displacement y is qEy
 - (B) The horizontal and vertical components of acceleration are $\mathbf{a}_x = \mathbf{0}$, $\mathbf{a}_y = \frac{qE}{m}$

(C) The equation of trajectory is $y = \frac{1}{2} \left(\frac{qEx^2}{mv^2} \right)$

(D)The horizontal and vertical displacements x and y after a time t are x = vt and $y = \frac{1}{2}a_yt^2$

Cutting of Thin Lenses

Q.8 An equiconvex lens of focal length **20 cm** is cut into two equal parts to obtain two Plano- convex lenses. The two parts are then put in contact as shown in figure. What is the focal length of the combination?

(A)Zero (B)5 cm (C)10 cm (D)20 cm

Combinations of Lenses & Mirrors

 $Q.9 \qquad \text{In the given figure below, there are 2 convex lenses L_1 and L_2 having focal length f_1 and f_2 respectively. The distance between L_1 and L_2 will be: }$

Emf and Emf Devices

(A)E₁

Q.10 For the given figure, which battery is doing positive work?

(B)E₂

(D)None of these

Mixed Combination of Cells

Q.11 Find the emf and internal resistance of a single battery which is equivalent to a combination of three batteries as shown in figure.

Parallel Combination of Cells

Q.12 In the circuit shown in figure, emf of the batteries are $E_1 = 3 V$, $E_2 = 2 V$, $E_3 = 1$ Vand their internal resistances are $R = r_1 = r_2 = r_3 = 1 \Omega$. The potential difference between the points A and B, and the current through branch containing resistor r_2 will be respectively

Kirchhoff's Voltage Law

Q.13 For the given figure, potential at **P** is

Series Combination of Cells

Q.14 n identical cells, each of emf ε and internal resistance**r**, are joined in series to form a closed circuit. One cell **A** is joined with reverse polarity. The potential difference across the terminal of **A** is

Galvanometer

Q.15 In a galvanometer, the deflection becomes the half when it is shunted by a 20Ω resistor. The galvanometer resistance is?

Galvanometer

- **Q.16** A galvanometer may be converted into an ammeter or voltmeter. In which of the following cases the resistance of the device will be the largest?
 - (Assume maximum current range of galvanometer = 1 mA)
 - (A) an ammeter of range 10 A
 - (C) an ammeter of range 5 A
- **(B)**a voltmeter of range 5 V **(D)**a voltmeter of range 10 V

Galvanometer

Q.17 In the circuit shown in the figure, the galvanometer **G** shows zero deflection. If the batteries **A** and **B** have negligible internal resistance, the value of the resistor **R** will be

Meter Bridge

Q.18 If there is no deflection in the galvanometer connected in a circuit shown in figure, then the ratio of lengths AC / CB is

Meter Bridge

(A)
$$\frac{54}{13}$$
 Ω (B) $\frac{20}{11}$ Ω (C) $\frac{48}{11}$ Ω (D) $\frac{11}{48}$ Ω

Meter Bridge

Q.20 The figure shows a meter bridge circuit with AB = 100 cm, $X = 12 \Omega$ and $R = 18 \Omega$, and the jockey J is at the balance point. If **R** is now made **8** Ω , through what distance will J have to be moved to obtain a balanced bridge?

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(D)	(B)	(C)	(D)	(A)	(B)	(A)	(A)	(A)	(C)
WORK SHEET										
Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(D)	(D)	(D)	(A)	(B)	(A)	(B,C,D)	(D)	(C)	(A)
Q.	11	12	13	14	15	16	17	18	19	20
Sol.	(B)	(C)	(C)	(C)	(D)	(D)	(A)	(A)	(C)	(B)