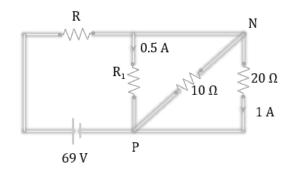
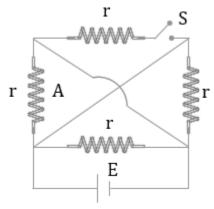


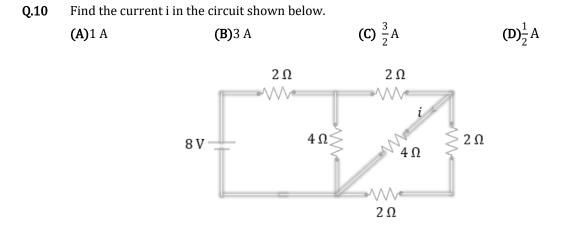

Q.3 Twelve resistors each of resistance r are connected together so that each lies along the edge of the as shown in the figure. The equivalent resistance between points 1 and 4 is


Q.4 The equivalent resistance between point's *A* and *B* is

Q.8 For the circuit shown in the figure, choose the correct options **(A)** The current through 10 Ω resistor connected across NP is 0.5 A **(B)**The value of $R_1 = 50 \Omega$ **(C)** The value of $R = 14 \Omega$

(D)The potential difference across resistor R is equal to 20 V $\,$


Q.9 In the circuit shown in figure, after closing the switchS, what is the change in current flowing through the resistanceA?


(A)No change in the value of current passing through resistance A

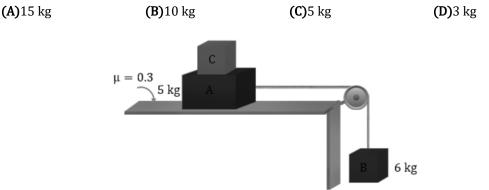
(B)The current passing through resistance A decreases

(C) The current passing through resistance A increases

(D)Data is insufficient to say anything

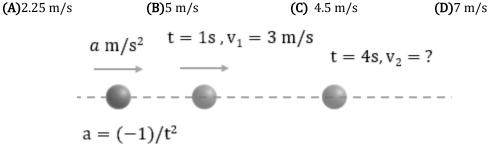
3

WORKSHEET


Angular Velocity

Q.1 Two particles A and B are moving in opposite directions on a circle. Initially particles A and B are diagonally opposite to each other. Particle A move with angular velocity π rad/s, angular acceleration $\pi/2$ rad/s2 and particle B moves with constant angular velocity 2π rad/s. Find the time after which both the particles A and B will collide.

(A)3.2 sec (B)2 sec (C) 3.6 sec (D)4.5 sec $\omega_A = \pi \operatorname{rad/s} \alpha_A = \frac{\pi}{2} \operatorname{rad/s^2}$ $\omega_B = 2\pi \operatorname{rad/s} \alpha_B = 0$


Net Contact Force

Q.2 The minimum mass of C that must be placed on A to prevent it from moving is equal to

Motion under Variable Acceleration

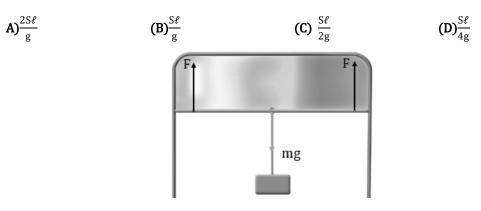
Q.3 A particle moves in a straight line with an acceleration 'a' m/s^2 given as function of time,a = $(-1)/t^2$. At time t = 1 s the particle has a velocity of 3 m/s, then find the velocity att = 4 s.

Partially Inelastic Collision

Q.4 A 1.0 kg ball drops vertically onto a floor from a height of 25 cm. It rebounds to a height of 4 cm. The coefficient of restitution for the collision is-

(A) 0.16 (B) 0.32	(C) 0.40	(D) 0.56
---------------------------------	-----------------	-----------------

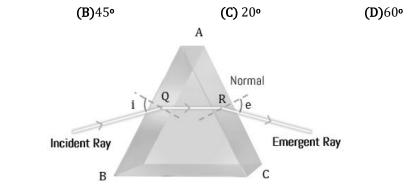
Thermal Stress


Q.5 Two uniform rods AB and BC have Young's modulus $1.2 \times 10^{11} \text{ N/m}^2$ and $1.5 \times 10^{11} \text{ N/m}^2$ respectively. If coefficient of linear expansion of AB is 1.5×10^{-5} /°C and both have equal area of cross section, then coefficient of linear expansion of BC, for which there is not shift of the junction at all temperatures, is

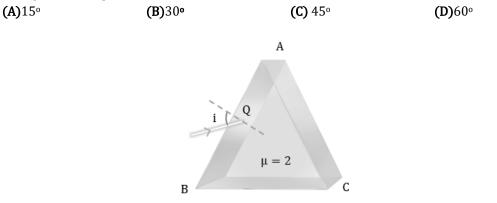
(A) 1.5×10^{-5} /°C (B) 1.2×10^{-5} /°C (C) 0.6×10^{-5} /°C (D) 0.75×10^{-5} /°C

Surface Tension

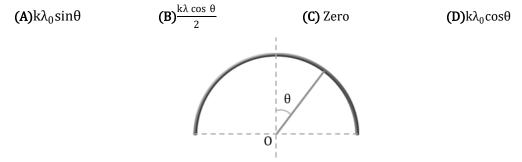
Q.6 Consider a U-shaped frame with a sliding wire of length ℓ and mass 'm' on its arm. It is dipped in a soap solution, taken out and placed in a vertical position such that a thin film is formed on it as shown in figure. Find maximum value of m so that wire does not descend: (Surface tension of soap solution is



Deviation in Prism

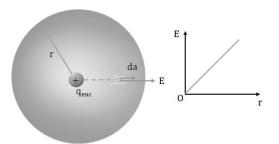

(A)30°

Q.7 A ray of light passes through an equilateral prism ($\mu = 1.5$) such that the angle of incidence is equal to the angle of emergence & the either is equal to 3/4 th of the angle of prism. Calculate angle of deviation.



Minimum Deviation

Q.8 If a light ray is incident ati = 90°, find the minimum value of the prism angle in degrees for which emergence is not possible.


Q.9 The following diagram represents a semicircular wire of linear charge density $\lambda = \lambda 0 \sin \theta$, where $\lambda 0$ is a positive constant. The electric potential at 0 is ($ta \ k = 1/(4\pi\epsilon 0)$)

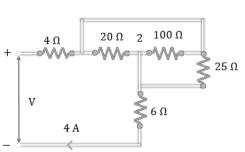
Application of Gauss's Law

Q.10 Electric field in a certain region is acting radially outward and the variation of electric field with distance from the origin is represented below. The slope of the graph isA'. The charge contained in a sphere of radius *a* centre at the origin will be given by

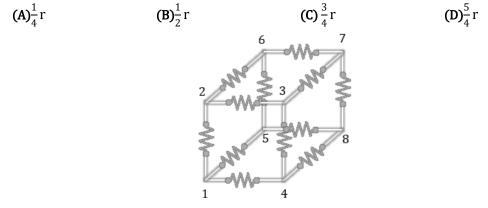


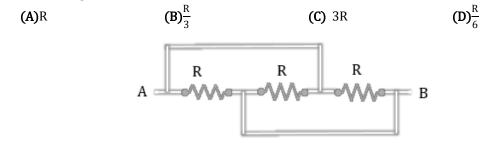
Series and Parallel Combination of Resistors

Q.11 Equivalent resistance between the points A and B is (in Ω)


(A)
$$\frac{1}{5}$$
 (B) $\frac{5}{4}$ (C) $\frac{7}{3}$ (D) $\frac{7}{2}$

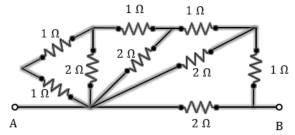
Series and Parallel Combination of Resistors

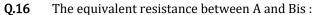

Q.12 In the circuit shown in figure, the potential difference V must be (A)50 V (D)1290 V

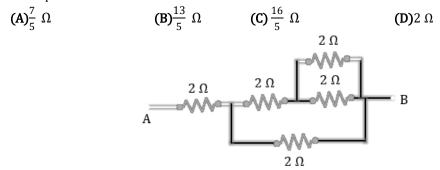

Series and Parallel Combination of Resistors

Twelve resistors each of resistance r are connected together so that each lies along the edge of the Q.13 cube as shown in the figure. The equivalent resistance between points 1 and 3 is

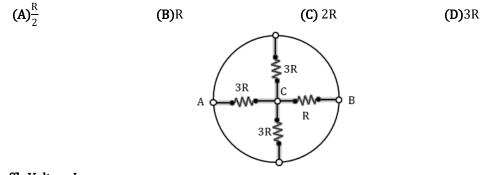
Series and Parallel Combination of Resistors

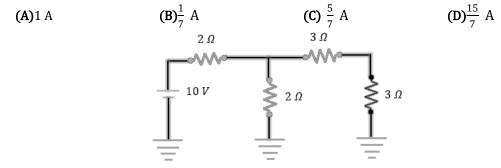

Q.14 Find the equivalent resistance between Aand B.


Series and Parallel Combination of Resistors


Q.15 What is the equivalent resistance between *A* and *B* in the following circuit?

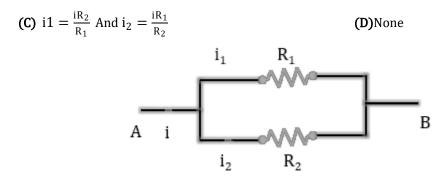
(B)2 Ω **(C)** 3 Ω **(A)**1 Ω **(D)**4 Ω


Series and Parallel Combination of Resistors

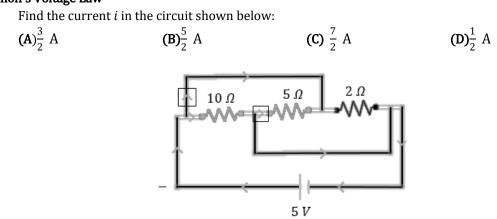

Series and Parallel Combination of Resistors

Q.17 The equivalent resistance between A and Bis :

Kirchhoff's Voltage Law


Q.18 In the circuit shown, the current in 3 Ω resistance is

Kirchhoff's Voltage Law


Q.19 When 2 resistors are in parallel combination, then determine i1 andi2, if the combination carries a current i?

(A)
$$i_1 = \frac{iR_2}{R_1 + R_2}$$
 And $i_2 = \frac{iR_1}{R_1 + R_2}$ (B) $i_1 = \frac{iR_2}{R_1 + R_2}$ and $i_2 = \frac{iR_1}{R_1 + R_2}$

Kirchhoff's Voltage Law

Q.20

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(A)	(C)	(B)	(B)	(C)	(A)	(B)	(C)	(A)	(D)
WORK SHEET										
Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(B)	(A)	(A)	(C)	(B)	(A)	(A)	(D)	(C)	(B)
Q.	11	12	13	14	15	16	17	18	19	20
Sol.	(C)	(B)	(C)	(B)	(A)	(C)	(C)	(C)	(A)	(C)