Q.1 In the circuit shown below, the current in the **1** Ω resistor is

Q.2 To get maximum current through a resistance of 2.5Ω , one can use **m** rows of cells, each row having **n** cells. The internal resistance of each cell is 0.5Ω . What are the values of **n** and **m** if the total number of cells is **45**?

Q.3 A circuit whose resistance **R** is connected to **n** similar cells. If the current in the circuit is the same whether the cells are connected in series or parallel, then the internal resistance **r** of each cell is given by

Q.4 Three equal resistors connected in series across a source of emf together dissipate **10 W** of power. What would be the power dissipated if the same resistors are connected in parallel across the same source of emf?

Q.5Resistors P, Q and R in the circuit have equal resistances. If the battery is supplying a total power of
12 W, what is the power dissipated as heat in resistor R ?
(A) 2 W(B) 6 W(C) 3 W(D) 8 W

Q.6 A battery of internal resistance 4Ω is connected to the network of resistance as shown in figure. In order that the maximum power can be delivered to the network, the value of **R** (in Ω) should be

Q.7 If the length of the filament of a heater is reduced by10%, the power of the heater will (A)Increase by about 9% (B)increase by about 11%
(C)Increase by about 19% (D)decrease by about 10%

Q.8 Power generated across uniform wire connected across a supply is **H**. If the wire is cut into **n** equal parts and all the parts are connected in parallel across the same supply, the total power generated in the wire is

Q.9 Two identical batteries, each of emf2 V and internal resistance $\mathbf{r} = 1 \ \Omega$ are connected as shown. The maximum power that can be developed across R using these batteries is

Q.10 For the given power output, there exists two values of external resistance, the product of these resistances will be equal to

WORKSHEET

Time of Flight with Incline as Frame of Reference

Q.1 Two inclined planes **OA** and **OB** having inclination (with horizontal) **30**° and**60**°, respectively, intersect each other at **O** as shown in figure. A particle is projected from point **P** with velocity $\mathbf{u} = \mathbf{10}(\sqrt{3}) \, \mathbf{ms^{-1}}$ along a direction perpendicular to the plane**OA**. If the particle strikes the plane **OB** perpendicular at**Q**, calculate the displacement **PQ**

Projectile Time, Height and Range

Q.2 A particle is projected from point **G** such that it touches the points **B**, **C**, **D** and **E** of a regular hexagon of side**a**. Its horizontal range **GH** is

Latent Heat

Q.3 An ice cube of mass M_0 is given a velocity v_0 on a rough horizontal surface with coefficient of friction μ . The block is at its melting point and latent heat of fusion of ice is **L**. The block receives heat only due to the friction forces and all work is converted into heat. Find the mass (M_t) of the remaining ice block after timet.

Newtons Second Law

Q.4 In the figure shown a cart moves on a smooth horizontal surface due to an external constant force of magnitude**F**. The initial mass of the cart is M_0 and velocity is zero. Sand falls on to the cart with negligible velocity at constant rate μ kg/s and sticks to the cart. The velocity of the cart at time t is:

$$(\mathbf{A})_{\overline{M_0 + \mu t}}^{\overline{Ft}} \qquad \qquad (\mathbf{B})_{\overline{M_0}}^{\overline{Ft}} e^{\mu t} \qquad \qquad (\mathbf{C})_{\overline{M_0}}^{\overline{Ft}} \qquad \qquad (\mathbf{D})_{\overline{M_0 + \mu t}}^{\overline{Ft}} e^{\mu t}$$

Bernoulli's Principle

Q.5 An open large tank with a nozzle attached contains three immiscible, inviscid fluids as shown. Assuming that the changes in h_1 , h_2 and h_3 are negligible, the instantaneous discharge velocity is

Potential Energy of a System of Multiple Point Charges

Q.6 Four charges $q_1 = 1 \mu C$, $q_2 = 2 \mu C$, $q_3 = -3 \mu C$ and $q_4 = 4 \mu C$ are kept on the vertices of a square of side 1 m. Find the electric potential energy of this system of charges

Conservation of Energy in Case of Electrostatics

Q.7 Figure shows a charge +**Q** clamped at a point in free space. From a large distance another charge particle of charge -**q** and mass of **m** is thrown towards +**Q** with an impact parameter **d** as shown with speed**v**. How many positions for minimum separation would be obtained for the particle?

Linear Charge Distribution

Q.7 If the linear charge density of a rod of length **3 m** varies $as\lambda = (2 + x) C/m$, where x is the distance from one end of the rod, then find the total charge on the rod

EMF and EMF Devices

Q.8 A battery has emf 4 V and internal resistancer. When this battery is connected to an external resistance of 2 Ω, a current of 1 A flows in the circuit. How much current will flow if the terminals of the battery are connected directly?
 (A) 1 A
 (B) 2 A
 (C) 4 A
 (D) Infinite

Series Combination of Cells

Q.9 n identical cells, each of e.m.f **ε** and internal resistance **r** are joined in series to form a closed circuit. The potential difference across any one cell is

(A)Zero (B) ε (C) $\frac{\varepsilon}{n}$ (D) $\frac{n-1}{n}\varepsilon$

Kirchhoff's Voltage Law

Q.10 In order to determine the emf of a storage battery, it was connected in series with a standard cell in a certain circuit and a current I_1 was obtained. When the battery is connected to the same circuit opposite to the standard cell a current I_2 flows in the external circuit from the positive plate of the storage battery. What is the emf E_1 of the storage battery, if the emf of the standard cell is E_2 ?

(A)
$$E_1 = \frac{I_1 + I_2}{I_1 - I_2} E_2$$
 (B) $E_1 = \frac{I_1 + I_2}{I_2 - I_1} E_2$ (C) $E_1 = \frac{I_1 - I_2}{I_1 + I_2} E_2$ (D) $E_1 = \frac{I_2 - I_1}{I_1 + I_2} E_2$

Kirchhoff's Voltage Law

Q.11 Two batteries of emf **4 V** and **8 V** with internal resistances **1** Ω and **2** Ω are connected in a circuit with a resistance of **9** Ω as shown in figure. The current and potential difference between the points **P** and **Q** are

$$(\mathbf{A})\frac{1}{3}\mathbf{A} \text{ And } 3 \text{ V} \qquad (\mathbf{B})\frac{1}{6}\mathbf{A} \text{ and } 4 \text{ V} \qquad (\mathbf{C})\frac{1}{9} \text{ A and } 9 \text{ V} \qquad (\mathbf{D})\frac{1}{2}\mathbf{A} \text{ and } 12 \text{ V}$$

$$P \xrightarrow{1 \Omega}_{r_1} 4 \text{ V} 8 \text{ V} \xrightarrow{r_2}_{r_2} Q$$

$$9 \Omega$$

Mixed Combination of Cells

Q.12 N identical cells are connected to form a battery. When the terminals of the battery are joined directly (short-circuited), current **I** flows in the circuit. To obtain the maximum value of **I**

(A)All the cells should be joined in series

(B)All the cells should be joined in parallel

(C)Two rows of *N*/*S* cells each should be joined in parallel

(D) \sqrt{N} Rows of \sqrt{N} cells each should be joined in parallel

Mixed Combination of Cells

Q.13 N identical cells are connected to form a battery. When the terminals of the battery are joined directly (short-circuited), current I flows in the circuit. To obtain the maximum value of I

(A)All the cells should be joined in series

(B)All the cells should be joined in parallel

(C)Two rows of N/S cells each should be joined in parallel

(D) \sqrt{N} Rows of \sqrt{N} cells each should be joined in parallel

Power in Electric Circuits

Q.14 Power generated across uniform wire connected across a supply is**H**. If the wire is cut into **n** equal parts and all the parts are connected in parallel across the same supply, the total power generated in the wire is

$(\mathbf{A})_{n^2}^{\mathrm{H}}$	(B) n ² H	(C) nH	$(\mathbf{D})_{n}^{\mathrm{H}}$
II-			11

Power in Electric Circuits

Q.15	If the length of the filament of a heater is reduced by 10% , the power of the heater wil						
	(A) Increase by about 9%	(B) Increase by about 11%					
	(C) Increase by about 19%	(D) Decrease by about 10%					

Centripetal Acceleration

Q.16 An electric kettle has two heating filaments. One brings it to boil in **10 min** and the other in **15 min** when they are connected across the same potential difference. If the two heating filaments are connected in parallel, then water in kettle will boil in

(A) 6 min	(B) 8 min	(C) 25 min	(D) 5 min
------------------	------------------	-------------------	------------------

Power Delivered and Heat Dissipated in a Circuit

Q.17 A 100 W bulb is designed to operate at a potential difference of 230 V. Find the current drawn by the bulb if it is operated at a potential difference for which it is designed.

Electric Bulbs

Q.18 The above configuration shows three identical bulbs, grade them in order of their brightness $(\mathbf{A})B_3 > B_2 = B_1(\mathbf{B})B_1 = B_2 > B_3(\mathbf{C})B_3 > B_1 > B_2(\mathbf{D})B_2 > B_1 > B_3$

Electric Bulbs

Q.19 Bulb **1** and Bulb **2** are rated (**30 W** – **200 V**) and (**60 W** – **200 V**) respectively. They are connected with a **400 V** power supply. Find which bulb will get fused if they are connected in parallel

(A)Bulb 1 will get fused

(C)Both will get fused

(B)Bulb 2 will get fused(D)No bulb will get fused

Electric Bulbs

Q.20A factory is served by a 220 V supply line. In a circuit protected by a fuse marked 10 A, the maximum
number of 100 W lamps in parallel that can be turned on is
(A)11(B)22(C)33(D)66

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(C)	(A)	(C)	(C)	(A)	(B)	(B)	(B)	(C)	(A)

WORK SHEET										
Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(A)	(C)	(B)	(B)	(A)	(B)	(A)	(C)	(B)	(A)
Q.	11	12	13	14	15	16	17	18	19	20
Sol.	(A)	(A)	(B)	(B)	(B)	(A)	(D)	(A)	(C)	(B)