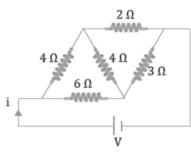

- **Q.1** In a balanced Wheatstone bridge, current in the galvanometer is zero. It remains zero when
 - (1) The emf is increased
 - (2) All resistance are increased by 10 Ω
 - (3) All resistance are made five times
 - (4) The battery and the galvanometer are interchanged
 - (A)Only (1) is correct
 - **(B)**(1),(2) and (3) are correct
 - **(C)** (1), (3) and (4) are correct
 - **(D)**(1) and (3) are correct

- **Q.2** Find equivalent resistance of the circuit between the terminal A and B
 - $(\mathbf{A})^{\frac{4}{3}} \Omega$
- **(B)** $\frac{8}{3}$ Ω
- (C) $\frac{16}{3}$ Ω
- **(D)** $\frac{32}{3}$ Ω

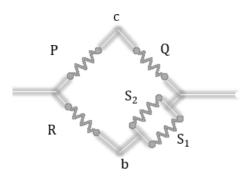

- **Q.3** Find equivalent resistance of the circuit
 - **(A)**1 Ω
- **(B)**4 Ω
- **(C)** 2 Ω
- **(D)**8 Ω


- **Q.4** For the network shown in the figure, the value of the current *i* is
 - **(A)** $\frac{9V}{35}$

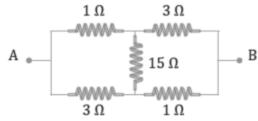
(B) $\frac{5V}{18}$

- (C) $\frac{5V}{0}$
- **(D)** $\frac{5V}{9}$

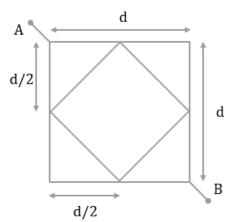
- Q.5 What resistor should be connected in parallel with the $20\,\Omega$ resistor in branch ADC in the circuit shown in figure, so that potential difference between B and D may be zero?
 - (A)20 Ω
- **(B)** 10Ω
- (C)5 Ω
- **(D)**15 Ω



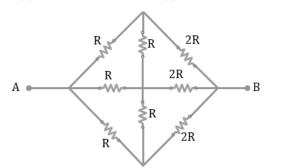
Q.6 In a circuit, three resistanceP,Q and R are connected in the three arms and the fourth arm is formed by two resistance S1 and S2 connected in parallel. The condition for which the circuit will become a balanced Wheatstone bridge is


$$(\mathbf{A})_{\mathbf{Q}}^{\mathbf{P}} = \frac{\mathbf{R}(\mathbf{S}_1 + \mathbf{S}_2)}{2\mathbf{S}_1\mathbf{S}_2} (\mathbf{B})_{\mathbf{Q}}^{\mathbf{P}} = \frac{\mathbf{R}}{\mathbf{S}_1 + \mathbf{S}_2}$$

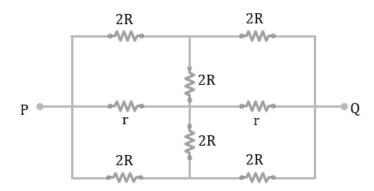
(C)
$$\frac{P}{Q} = \frac{2R}{S_1 + S_2}$$


(C)
$$\frac{P}{Q} = \frac{2R}{S_1 + S_2}$$
 (D) $\frac{P}{Q} = \frac{R(S_1 + S_2)}{S_1 S_2}$

- Q.7 The equivalent resistance between A and B will be:
 - **(A)** $\frac{25}{7}$ Ω
- **(B)** $\frac{33}{7}$ Ω
- (C) $\frac{25}{17} \Omega$
- **(D)**4 Ω



- **Q.8** The wire has linear resistance p (in Ω /m). The resistance between points A and B if the side of the big square is d.
 - $(\mathbf{A})^{\mathrm{pd}}_{\overline{\sqrt{2}}}$
- **(B)** $\sqrt{2}$ pd
- **(C)**2pd
- **(D)**3pd



- **Q.9** Find the equivalent resistance between A and B.
 - **(A)**2R
- **(B)**3R
- **(C)**R

(D) $\frac{R}{2}$

- **Q.10** The effective resistance between points P and Q of the electrical circuit shown in the figure is:
 - $\textbf{(A)} \frac{2Rr}{R+r}$
- **(B)**2r + 4R
- (C) $\frac{8R(R+r)}{3R+r}$
- **(D)** $\frac{5}{2}$ R + 2r

CLASS 12 JEE PHYSICS

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(C)	(C)	(B)	(B)	(A)	(D)	(B)	(A)	(C)	(A)