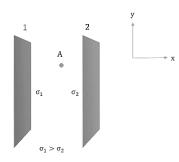
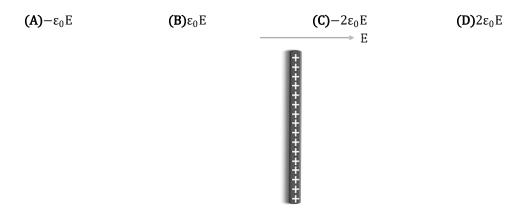

Q.1 ChargesQ, 2Q and -Q are given to three concentric conducting spherical shellA, B and C respectively as shown in figure. The ratio of charges on the inner and outer surfaces of shell C will be

Q.2 Figure shows a system of three concentric metal shellsA, B and C with radiia, 2a and 3a respectively. Shell B is earthed and shell C is given a chargeQ. Now, if shell C is connected to shellA, then the final charge on the shell B is equal to



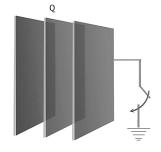
Q.3 Two concentric thin conducting spherical shells having radius **R** and **2R** are shown in figure. A charge +**Q** is given to shell **A** and -**4Q** is given to shell**B**. Now shell **A** and **B** are connected by a thin conducting wire, then the final charge on the sphere **B** will be:



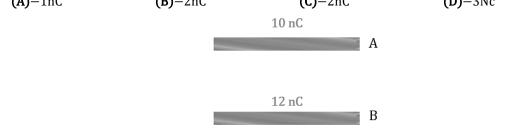
Q.4Two large conducting sheets are kept parallel to each other as shown in the figure. In equilibrium, the
charge density on facing surfaces is σ_1 and σ_2 . What is the net value of electric field at A ?

$$(\mathbf{A})_{\epsilon_0}^{\sigma_1} \hat{\mathbf{i}} \qquad \qquad (\mathbf{B}) - \frac{\sigma_2}{\epsilon_0} \hat{\mathbf{i}} \qquad \qquad (\mathbf{C})_{\frac{\sigma_1 + \sigma_2}{2\epsilon_0}}^{\sigma_1 + \sigma_2} \hat{\mathbf{i}} \qquad \qquad (\mathbf{D})_{\frac{\sigma_1 - \sigma_2}{2\epsilon_0}}^{\sigma_1 - \sigma_2} \hat{\mathbf{i}}$$

Q.5 An uncharged conducting large plate is placed as shown in the figure below. Now a uniform electric field **E** towards right is applied. Find the induced charge density on the right surface of the plate.



Q.6 A large charged conducting sheet is placed in a uniform electric field, perpendicularly to the electric field lines. After placing the sheet into the field, the electric field on the left side of the sheet is $E1 = 5 \times 105 \text{ V/m} \text{ and on the right it is } 3.6\pi \times 10^{-2} m^2$


 $E2 = 3 \times 105 \text{ V/m}$. The sheet experiences a net electric force of 0.08 N. Find the area of one face of the sheet.

(Assume the external field to remain constant after introducing the large sheet)

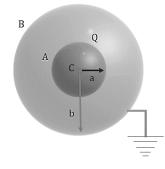
Q.7 Three identical large plates are placed parallel to each other at a very small separation as shown in the figure. The central plate is given a charge**Q**. What amount of charge will flow to earth when the key is closed. (The other two plates are initially neutral)

Q.8Two conducting plates A and B are placed parallel to each other. A And B are given
charges 10 nC and 12 nC respectively. Find the distribution of charge on the inner surface of plateA.
(A)-1nC(B)-2nC(C)-2nC(D)-3Nc

Q.9 Determine the current flowing (in A) through an element at time $t = 2 \sec(\frac{1}{2})$ if the charge flow is given by $q = (2t^2 + 3)$ C.

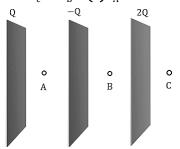
Q.10The current through a wire depends on time as I = (2 + 3t) A. Calculate the charge crossed through a
cross-section of the wire in 10 s.
(A) 170 C(B) 70 C(C) 150 C(D) 20 C

Q.11 A conducting sphere **A** of radius **a**, with charge**Q**, is placed concentrically inside a conducting shell **B** of radius**b**. **B** is earthed and **C** is the common center of **A** and **B**. Study the following statements. *I*. The potential at a distance **r** from**C**, where


$$a \le r \le b$$
, is $\frac{1}{4\pi\epsilon_0} \left(\frac{Q}{r}\right)$

II. The potential difference between **A** and **B** is

$$\frac{Q}{4\pi\varepsilon_0}\left(\frac{1}{a}-\frac{1}{b}\right)$$


III. The potential at a distance ${\bm r}$ from ${\bm C}$, where

$$\begin{aligned} \mathbf{a} &\leq \mathbf{r} \leq \mathbf{b}, \text{ is } \frac{\mathbf{Q}}{4\pi\epsilon_0} \left(\frac{1}{\mathbf{r}} - \frac{1}{\mathbf{b}}\right) \\ \text{(A)Only (I) and (II)} \qquad \text{(B)Only (II) and (III)} \qquad \text{(C)Only (I) and (III)} \qquad \text{(D)All} \end{aligned}$$

Q.12 Three large identical conducting parallel plates carrying charge+Q,-Q and +2Q respectively, are placed as shown in the figure. If E_A , E_B and E_C refer to the magnitudes of the electric fields at points A, B and C respectively, then

 $(\mathbf{A}) \mathbf{E}_{\mathbf{A}} > \mathbf{E}_{\mathbf{B}} > \mathbf{E}_{\mathbf{C}}$ $(\mathbf{B}) \mathbf{E}_{\mathbf{A}} = 0 \text{ and } \mathbf{E}_{\mathbf{c}} > \mathbf{E}_{\mathbf{B}} \quad (\mathbf{C}) \mathbf{E}_{\mathbf{A}} = 0 \text{ and } \mathbf{E}_{\mathbf{B}} > \mathbf{E}_{\mathbf{C}} \quad (\mathbf{D}) \mathbf{E}_{\mathbf{A}} = 0 \text{ and } \mathbf{E}_{\mathbf{B}} = \mathbf{E}_{\mathbf{C}}$

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(D)	(B)	(C)	(D)	(B)	(A)	(C)	(A)	(D)	(A)
Q.	11	12								
Sol.	(B)	(B)								