Q.1 The acceleration due to gravity g and mean density of the earth ρ are related by which of the following relations? (Where G is the gravitational constant and R is the radius of the earth.)

(A)
$$\rho = \frac{3g}{4\pi GR}$$
 (B) $\rho = \frac{3g}{4\pi GR^3}$ (C) $\rho = \frac{4\pi gR^2}{3G}$ (D) $\rho = \frac{4\pi gR^3}{3G}$

Q.2At what depth from the surface of earth, the time period of a simple pendulum is 0.5% more than that
on the surface of the earth? (Radius of earth is 6400 km)(A)32 km(B)64 km(C) 96 km(D)128 km

Q.3 What should be the angular speed with which the earth have to rotate on its axis so that a person on the equator would weigh $\frac{3}{5}$ as much as present?

(A)
$$\sqrt{\frac{2g}{5R}}$$
 (B) $\sqrt{\frac{5g}{2R}}$ (C) $\sqrt{\frac{g}{R}}$ (D) $\sqrt{\frac{7g}{2R}}$

Q.4 The rotation of the earth having radius R about its axis speeds up to a value such that a man at latitude of 60° feels weightlessness. The duration of the day in such a case is

(A)
$$\pi \sqrt{\frac{R}{g}}$$
 (B) $\frac{\pi}{2} \sqrt{\frac{R}{g}}$ (C) $\frac{\pi}{3} \sqrt{\frac{R}{g}}$ (D) $2 \sqrt{\frac{g}{R}}$

Q.5 The value of acceleration due to gravity at certain height h above the surface of the earth is $\frac{g}{4}$, where g is the value of acceleration due to gravity at the surface of the earth. The height h is (R is the radius of earth)

Q.6 A simple pendulum has a time period T_1 when on the earth's surface and T_2 when taken to a height R above the earth's surface, where R is the radius of the earth. The value of $\frac{T_2}{T_1}$ is

(A)1 (B)
$$\sqrt{2}$$
 (C) 2 (D)4

Q.7 If the change in value of acceleration due to gravity at a height h above the surface of the earth is same as at a depth x below it, then (Assume, x and h being much smaller than the radius of the Earth)

(A)
$$x = h$$
 (B) $x = 2h$ (C) $x = \frac{h}{2}$ (D) $x = h^2$

Q.8 If earth suddenly stops rotating, then the weight of an object of mass m at equator will (ω is angular speed of earth and R is its radius)

(A)Decrease by $m\omega^2 R$ (C)Decrease by $m\omega^2 R$

(B)increase by mω²R
(D)increase by mω²R

Q.9 What should be the angular speed with which the earth must rotate on its axis so that a person on the equator would weigh $\frac{3}{5}$ th of weight measured without considering earth's rotation? (Take R as the equatorial radius and g as acceleration due to gravity)

Q.10 A train of mass m moves with a velocity v on the equator from east to west. If ω is the angular speed of earth about its axis and R is the radius of the earth then the normal reaction acting on the train is

(A)mg
$$\left[1 - \frac{(\omega R - 2v)\omega}{g} - \frac{v^2}{Rg}\right]$$

(B)mg $\left[1 - 2\frac{(\omega R - v)\omega}{g} - \frac{v^2}{Rg}\right]$
(C)mg $\left[1 - \frac{(\omega R - 2v)\omega}{g} - \frac{v^2}{Rg}\right]$
(D)mg $\left[1 - 2\frac{(\omega R - v)\omega}{g} - \frac{v^2}{Rg}\right]$

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(A)	(B)	(A)	(A)	(A)	(D)	(B)	(B)	(A)	(A)