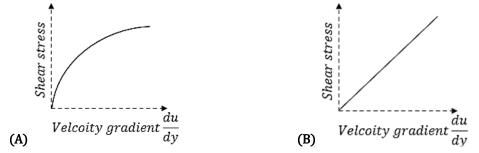
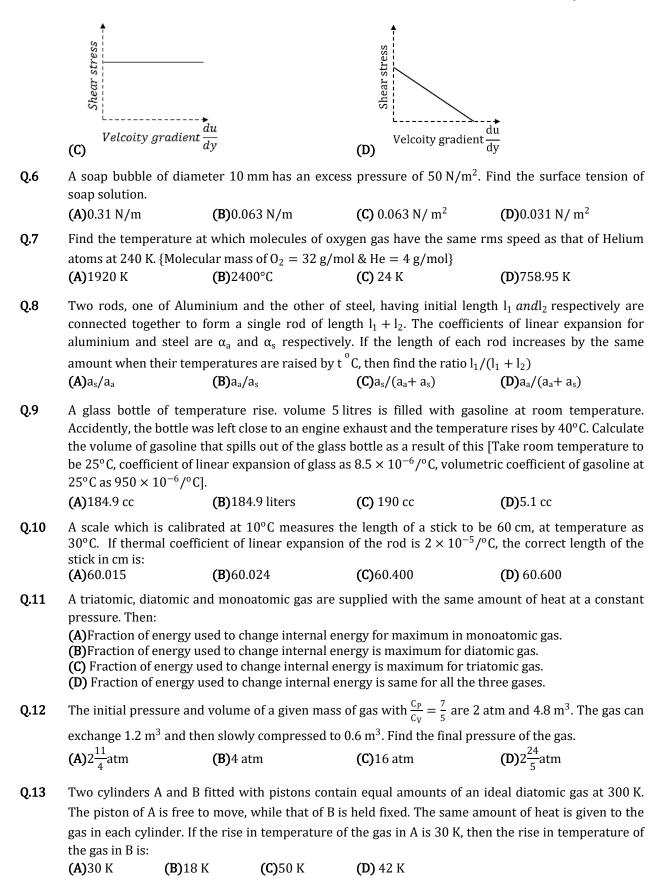
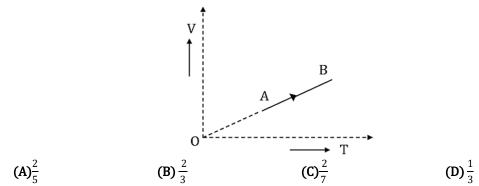

WORK SHEET

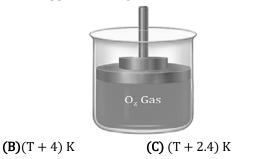
Q.1 A lead bar of length 50 cm and square cross-section of side 5 cm is fixed to a vertical wall as shown in figure. A massless tank is suspended from the end of the bar with the help of a massless rope. The tank is slowly filled with mercury at room temperature. Find the level of mercury in the tank so that the end of the bar deviates by 1 mm. [Take modulus of rigidity for lead as 5.6 GPa and area of base of cylindrical tank as 0.42 m^2 , $\rho H_g = 13600 \text{ kg/m}^3 \& g = 9.8 \text{ m/s}^2$]

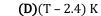



- Q.2A steel rod of 10 mm diameter is loaded with a force of 20 kN. Change in diameter of the rod is
 3.82×10^{-3} mm. Given, Young's modulus for steel is 200 GPa, find its Poison's ratio.
(A) 0.30(B) 0.28(C) 0.21(D) 0.88
- **Q.3** A tap is attached to a water tank as shown in figure. Water level above the tap is maintained at h = 0.2 m. The cross-sectional area of the tap is $\sqrt{2} \times 10^{-4} \text{m}^2$. Assuming constant pressure throughout the stream of water, find the velocity and cross-sectional area of the stream 0.2 m below the opening of the tap: [Assume g = 10 m/s²] (A) $2\sqrt{2} m/s$; $10^{-4} m^2$ (B)1 m/s; $10^{-4} m^2$ (C)2 m/s; $10^{-4} m^2$ (D)2 m/s; $10^{-5} m^2$
- **Q.4** A closed tube filled with water is rotating as shown in figure. The pressure difference $P_A P_C$ is

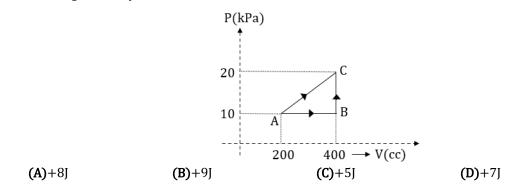
(A) $-6.1 \times 10^4 \text{ N/m}^2$ (B) $-5.2 \times 10^4 \text{ N/m}^2$ (C) $-7.2 \times 10^4 \text{ N/m}^2$ (D) $-2.4 \times 10^4 \text{ N/m}^2$


Q.5 Which of the following graph shows the relation between shear stress and velocity gradient for a non-Newtonian fluid?

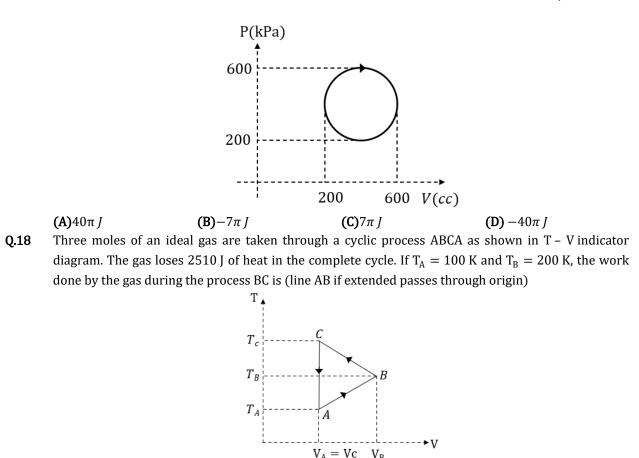



(A)(T - 4) K

Q.14 The volume V of a monoatomic gas varies with its temperature T, as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is



Q.15 Figure shows a cylindrical container containing oxygen gas and closed by a piston of mass 50 kg. Piston can slide smoothly in the cylinder. Its cross-sectional area is 100 cm² and atmospheric pressure is 10⁵Pa. Some heat is supplied to the cylinder so that the piston is slowly displaced up by 20 cm. Find the amount of heat supplied to the gas.



Q.16 If a gas is taken from A to C through B, then heat absorbed by the gas is 8 J. Heat absorbed by the gas in taking it directly from A to C is

Q.17 Calculate the heat absorbed by the system undergoing a cyclic process as shown in the figure below.

A C VB											
	WORK SHEET										
	Q.	1	2	3	4	5	6	7	8	9	10
	Sol.	(C)	(A)	(C)	(C)	(A)	(C)	(A)	(C)	(A)	(B)
	Q.	11	12	13	14	15	16	17	18	19	20
	Sol.	(C)	(D)	(D)	(D)	(A)	(B)	(A)	(B)	(D)	
	(A) 5	000 J		(B) -5000 J) 4000 J		(D) –2500 <i>J</i>		

Q.19 24 J of heat is added to a diatomic gas in a process in which the gas performs 8 J of work. Find the molar heat capacity of the gas during the process.

(A)4R

R (B) $\frac{6R}{5}$ (C)3R (D) $\frac{15R}{4}$

Q.20 The initial pressure and volume of a given mass of gas having $\gamma = \frac{C_P}{C_V}$ are P_0 and V_0 . The gas is separated from the surroundings by a diathermic wall. It is suddenly compressed to $\frac{V_0}{6}$ and then slowly compressed to $\frac{V_0}{36}$. If the final pressure of the gas is $n^{\gamma+1}$, value of n is

ANSWER KEY