Q.1 Match the Van der Waal's for one mole of gas given in column **B** to the conditions in column**A**.

	COLUMN 1		COLUMN 2
A	At low pressure	(i)	P(V-B)=RT
В	At High pressure	(ii)	$(P + \frac{a}{V^2})V = RT$
С	At low pressure and high temperature	(iii)	PV = RT
D	At room temperature and high pressure	(iv)	$(P + \frac{a}{V^2})(V - b) = RT$

(A) A -	(i); B-	(ii); C-	(iii); D-	(iv)
----------------	---------	----------	-----------	------

Q.2 At S.T.P, the volume of **1 mole** of gas is measured to be **25 litres** then, nature of gas and type of force dominating are

- **(A)**Real gas with +ve deviation, repulsive force.
- **(B)**Real gas with -ve deviation, attractive force.
- **(C)**Real gas with +ve deviation, attractive force.
- (D)Real gas with -ve deviation, repulsive force.

Q.3 Calculate the compressibility factor for a gas, if **1 mole** of it occupy 0.821*litre* at 300 *K* and 50atm.

(A) 1

- **(B)** 1.33
- **(C)** 1.67
- **(D)** 0.67

Q.4 Find the most probable speed (V_{mp}) of nitrogen gas molecules atT = 560 K. (Given: \sqrt{R} = 2.88 where R is gas constant)

- **(A**)460 m/s
- **(B)** 500 m/s
- **(C)** 576 m/s
- **(D)** 600 m/s

Q.5 The average time taken by a molecule of oxygen at **300** *K* to travel a distance equal to the diameter of the earth. (Diameter **of earth**= 12,800 km)

- (A) 5 hr
- **(B)** 10 hr
- (C) 8 hr
- **(D)** 15 hr

Q.6 Suppose a container is evacuated to leave just one molecule of a gas in it. Let v_{av} and v_{rms} represent the average speed and rms speed of the gas.

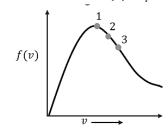
- **(A)** $v_{av} > v_{rms}$
- **(B)** $v_{av} < v_{rms}$
- $\textbf{(C)}v_{av}=v_{rms}$
- **(D)** v_{rms} is undefined.
- **Q.7** Which of the following gases has maximum rms speed at a given temperature?
 - (A) Hydrogen
- (B) Nitrogen
- (C) Oxygen
- (D) Carbon dioxide
- **Q.8** The rms speed of oxygen molecules in a gas is *v*. If the temperature is doubled and oxygen molecules dissociate into oxygen atoms, the rms speed will become
 - **(A)** v

- **(B)** $\sqrt{2}v$
- (C) 2v

- **(D)** 4v
- **Q.9** Identify the correct order as indicated in the given diagram of different kind of speed of molecules of same gas.

 $v_{mp} \rightarrow Most probable speed$

 $v_{rms} \rightarrow Root mean square speed$


 $v_{av} \rightarrow Average speed$

(A) $v_{mp} - 3$, $v_{av} - 2$, $v_{rms} - 1$

(B) $v_{mp} - 1$, $v_{av} - 2$, $v_{rms} - 3$

(C) $v_{mp} - 2$, $v_{av} - 1$, $v_{rms} - 3$

(D) $v_{mp} - 3$, $v_{av} - 1$, $v_{rms} - 2$

- **Q.10** Mean free path depends on which of the following?
 - (A)Temperature

(B) Density of molecules

(C)Diameter of the molecule

(D)Both (b) and (c)

CLASS 11 NEET PHYSICS

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(B)	(A)	(C)	(C)	(C)	(C)	(A)	(C)	(B)	(A)