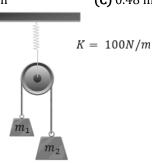
Q.1	The factor $\frac{R}{N_A}$ in an ideal gas law is	
·	(A)Celsius constant	(B)Characteristic gas constant
	(C) Universal gas constant	(D)Boltzmann's constant
Q.2	A storage tank contains 2 moles of Ar, 3 moles total pressure exerted by mixture of gases at 30	of O_2 , 5 moles of N_2 . If volume of tank is $1m^3$, find the 00 K?
	(A)29442 N/m ² (B)22000 N/m ² (C) 21000 N	
Q.3	diffusion.	iffusion andeffusion? cules at any direction and effusion is the reverse of es and effusion is the property of the gas container
	(C) Diffusion occurs at any direction, whereas	effusion occurs under the potential difference. cules due to concentration gradient, whereas effusion
	is the escaping of gas molecules through the p	pres without collision.
Q.4	The rate of diffusion of two gases A and Bis in a of diffusion of Cwith respect to A is	he ratio of 1: 2 and the B and C in the ratio1: 8, the rate
	(A)1; 12 (B) 12 (C)	(D) 16
Q.5	The time taken for a certain volume of gas to conditions an equal volume of oxygen took 4 m (A) 32.0 g (B) 16.0 g	diffuse through a small hole was2 min [®] Under similar hin [®] to pass. The molecular mass of the gas is (C) 8.0 g (D) 4.0 g
Q.6	Under which of the following condition is the la (A)High pressure and high temperature (B)Low pressure and low temperature (C) Low pressure and high temperature (D)High pressure and low temperature	aw PV = nRT obeyed most closely by a real gas?
Q.7	In Van der Waal's equation of state of the gas, t (A)Intermolecular collisions per unit volume. (C) Volume occupied by molecules.	he constant 'b' is a measure of (B)Intermolecular attraction. (D)Intermolecular repulsions.
Q.8	The value of 'a' in Van der Waal's equation for 2.25 Respectively the gas which can most easily $(A)0_2$ $(B) N_2$	the gases O ₂ ,N ₂ , NH ₃ and CH ₄ are 1.35, 1.38, 4.16and be liquefied is (C) NH ₃ (D) CH ₄
Q.9	1 mole of real gas (a = 1.4) occupies a volume (A) 2460 atm (B) 2320 atm	of 0.1 L at300 K, then what will be the pressure of gas? (C) 106 atm (D) 212 atm
Q.10	In the processPV = constant, pressure (P) ver (A)A straight line parallel to P-axis (C) An inclined straight line passing through t	(B) a straight line parallel to ρ-axis

WORKSHEET

Relative Motion

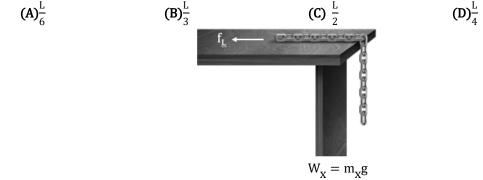

Q.1 A train is running at a speed of 72 km/hr. A boy runs inside the train in same direction (as that of train) with a speed of 10 km/hr with respect to the train. Find the velocity of boy as seen from the ground

(A)62 km/hr Along the direction of motion of train

- (B)72 km/hr Opposite to direction of motion of train
- (C) 82 km/hr Along the direction of motion of train
- (D)None of these

Pulley mass system

Q.2 For the given system, find the extension in the spring if $m_1 = 4 \text{ kg}$ and $m_2 = 6 \text{ kg}$. Takeg10 m/s². **(A)**0.96 m **(B)**0.86 m **(C)** 0.48 m **(D)**0.24 m


Vertical circular Motion

Q.3 What is the velocity of the bob of a simple pendulum at its mean position, if it is able to rise to a maximum vertical height of 40 cm. $(\text{Take } g = 9.8 \frac{\text{m}^2}{\text{c}})$

(A) 1.4 m/s **(B)** 0.7 m/s **(C)** 2.8 m/s **(D)** 3.6 m/s

Centre of mass

Q.4 A heavy uniform chain lies on the top of horizontal table. If the coefficient of static friction between the chain and the table surface is0.2, then the maximum fraction of the length of Th chain that can be hung over one edge of the table is:

Rotational Motion

Q.5 Find the speed of uniform solid sphere after rolling down (without sliding) an inclined plane of vertical height h = 0.14 m from rest is $(Take g = 9.8 \text{ m/s}^2)$

Young's Modulus

•	s Modulus						
Q.6				ne. The first wire has a cross –			
	sectional are 1 mm^2 and the second wire has cross – sectional area4 mm^2 . If the length of the fi						
wire	is increased by Δ	L on applying a force of10 N,	how much force is need	eded to stretch the second wire			
by	the same amount						
(A) 160 N		(B) 100 N	(C) 90 N	(D) 80 N			
Pascal	's law						
Q.7 lift			-	neter of 50 cm in the hydraulic d on the large position with a			
diamet							
ulaine	(A) 300 N	(B) 50 N	(C) 400 N	(D) 600 N			
	(1) 500 1						
Equati	on of continuity						
Q.8				2 m^2 at a speed of 5 m/s with a			
	pressure of 3×10^{-10} at pointB.	0 ⁵ Pa at a pointA. At pointB, th	ne cross – sectional area	a is 1 m ² . Calculate the pressure			
	(A) 5 × 10 ⁵ Pa	(B) 2.625 × 10 ⁵ Pa	(C) 3 × 10 ⁴ Pa	(D) 1.5 × 10 ⁵ Pa			
Surface	e tension						
Q.9		f diameter 2.8 mm break up ir	nto 216 identical drons	What is the approximate			
Q.)			_				
	change in energy of bigger drop?(Given: Surface tension of liquid, $T = 75$ dyne/cm) (A)25 π erg (B)29.4 π erg (C) 32 π erg (D)28 π erg						
	(A) 25π erg	(B) 29.4π erg	(C) $32\pi \text{ erg}$	(D) 28π erg			
Conve	rsion of temperature	a					
Q.10	=		ides with that of Fahre	nheit thermometer for a liquid.			
U	The reading of a centigrade thermometer coincides with that of Fahrenheit thermometer for a liquid. The temperature of the liquid (in C°) is						
	(A) -40°C	(B) 0°C	(C) 100°C	(D) 300°C			
	(1) 10 0		(0) 100 0				
Ideal g	as						
Q.11		e, which one of the following i	is correct?				
·		(B) $V_{real} < V_{ideal}$ (C) $V_{real} = V$					
	(real ideal)	real ideal (C) real	ideal (D) None of these				
Dortial	pressure of gas						
		contains a minture of	mole of orman (O) and two moles of Nitro			
Q.12) and two moles of Nitrogen			
	(N_2) at300 K. Fir	nd the ratio of partial pressure		otal pressure exerted			
	(A)1 ;3	(B) 3;1 (C) 2;3	(D)1;2				

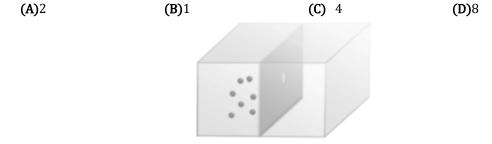
Ideal gas

Q.13 A gas flushes out of a container through a pin hole four times quickly as methane. The molecular weight of thegas is

(A) 2 g (B) 1 g (C) 16 g (D) 8 g

Mixture of gases

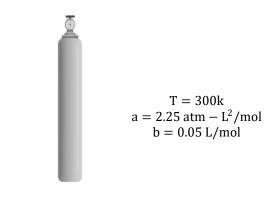
Q.14 Density ratio of O_2 and H_2 is 16 : 1. The ratio of their rate of effusion under same conditions is (A)4: 1 (B)1: 4 (C) 1: 2 (D) 2: 1



Ideal gas

Q.15	A gas has a density o	density of 3 g/L at S.T.P. What is its molar mass?				
	(A) 67.02 g	(B) 40 g	(C) 20.4 g	(D) 10 g		

Mixture of gases


Q.16 2 moles of gas A effuses from a container in10 min. How many moles of gas B would effuse through the same container is same time under similar conditions. Ratio of specific gas constant for gas A to the gas B is 1:16

Van der Waal's equations

Q.17 Pressure exerted by 1 mole of methane in 0.25 litre container at 300 K using Van der Waal's equations? Given $a = 2.25 \text{ atm} - L^2/\text{mol } b = 0.05 \text{ L/mol}$

(A)86 atm (B) 87.15 atm (C) 100 atm (D)	D) 59 atm
---	------------------

Ideal gas

- **Q.18** An ideal gas cannot be liquefied because
 - (A)Its critical temperature is always above 0°C.
 - **(B)**Its molecules are relatively smaller in size.
 - **(C)** It solidifies before becoming a liquid.

(D)Forces operating between its molecules are negligible.

Ideal gas

Q.19 The lowest pressure (the best vacuum) that can be created in laboratory at 20° C is 10^{-10} mm of Hg.

At this pressure, the number of ideal gas molecules per cm³ will be (A) 3.22×10^{12} (B) 1.61×10^{10} (C) 3.22×10^{8} (D) 3.29×10^{6}

ANSWER KEY

1	2	3	4	5	6	7	8	9	10
(D)	(A)	(A)	(A)	(C)	(C)	(C)	(C)	(C)	(C)
WORK SHEET									
1	2	3	4	5	6	7	8	9	10
(C)	(A)	(C)	(A)	(A)	(A)	(C)	(B)	(B)	(A)
11	12	13	14	15	16	17	18	19	
(A)	(A)	(B)	(B)	(A)	(D)	(B)	(D)	(D)	
	1 (C) 11	1 2 (C) (A) 11 12	1 2 3 (C) (A) (C) 11 12 13	I 2 3 4 (C) (A) (C) (A) 11 12 13 14	(D) (A) (A) (A) (C) WORK SHE WORK SHE WORK SHE MORE SHE M	(D) (A) (A) (C) (C) (A) (A) (A) (C) (C) (C) 1 2 3 4 5 6 (C) (A) (C) (A) (A) (A) 11 12 13 14 15 16	(D) (A) (A) (C) (C) (C) (C) UD (A) (A) (A) (C) (C) (C) (C) 1 2 3 4 5 6 7 (C) (A) (C) (A) (A) (A) (C) 11 12 13 14 15 16 17	Image: Constraint of the second system Image: Consecond system Image: Constraint of t	Image: Constraint of the second system Image: Consecond system Image: Constraint of t