Collision

Q.1 In a collision between two balls of masses m_1 and m_2 , the balls move at right angles to each other, when

(A)Balls are identical i.e., $m_1 = m_2$ (C)Collision is not only oblique but also elastic (B)One of the balls is at rest(D)When all of the above are true

Fuel Consumption

Q.2 A rocket of initial mass 3000 kg is burning fuel at the rate of 30 kg/s. Find the mass of the rocket after 10 s.

(A) 2700 kg	(B) 3300kg	(C) 2000kg	(D) 0kg
Fuel Consumption			

Q.3 Mass of spacecraft varies with time as $m = 5000 e^{-t}$ kg. Find the rate of fuel ejection after 5 s. (Take e = 2.718)

Impulse

Q.4 The point B lies on a smooth plane inclined at 30° to the horizontal. A particle of mass $\frac{1}{7}$ kg is dropped from a point A which lies 10 m vertically above B.The particle rebounds from the plane in the direction BC with speed v m/s at an angle of 45° to the plane. Find the impulse exerted by the plane

on the particle (in Ns)

(A) $1 + \sqrt{3}$ Fuel Consumption

Q.5 A rocket of mass 20 kg has 180 kg fuel. The exhaust velocity of the fuel is 1.6 km/s. Calculate the minimum rate of consumption of fuel so that the rocket may rise from the ground. (Take $g = 9.8 \text{ m/s}^2$)

Fuel Consumption

Q.6 In a gravity free space, a spacecraft of mass 10 kg, having 20 kg of fuel is initially at rest. The fuel is ignited and the exhaust velocity is 0.1 km/s. Then, speed gained by the spacecraft when the fuel is fully consumed is

Coefficient of restitution

Q.7 Two smooth spheres made of identical material having masses m and 2m undergo an oblique impact as shown in figure. The initial velocities of the masses are also shown. The impact force is along the line joining their centers/ The coefficient of restitution is $\frac{5}{6}$. The velocities of the masses after the impact are:

Rate of ejection of gases

Q.8 A cart of total mass 50 kg is at rest on a horizontal road having coefficient of friction 0.1. Gases are ejected from this cart backwards with velocity 20 m/s w.r.t the cart. The rate of ejection of gases is 2 kg/s. The cart will start moving after time: [Take $g = 10 \text{ m/s}^2$]

Rate of ejection of gases

(A)t = 2s

Q.9A car at rest on a horizontal surface (with coefficient of friction 0.1) has total mass 50 kg. Gases are
ejected from this car backwards with relative velocity 20 m/s. The rate of ejection of gases is 2 kg/s.
Total mass of gas is 20 kg. Find the maximum speed of the car (in m/s) (Take $g = 10 \text{ m/s}^2$)
(A)0.2 m/s(B)0.75m/s(C)0.6m/s(D)0.4m/s

Thrust Force

Q.10 In case of a variable mass system, a thrust force of magnitude $\left|V_{r}\frac{dm}{dt}\right|$ has to be applied on the system,

whose mass is changing. Which of the following statements is/are correct?

(A)Direction of thrust force is along V_r if the mass is increasing.

(B)Direction of thrust force is opposite to V_r if the mass is increasing.

(C)Direction of thrust force is opposite to V_r if the mass is decreasing.

(D)Direction of thrust force is along V_r if the mass is decreasing.

WORK SHEET

Motion under gravity

Q.1A ball is thrown vertically upward with a velocity of 10 m/s from the top of a tower of height of 50 m.Find the time taken by the ball to reach a height 10 m from the ground. (take $g = 10 \text{ m/s}^2$)(A)1 s(B)3s(C)4s(D)5s

Relative Motion

- **Q.2** Two trains are moving on parallel tracks in opposite directions at the speeds of 20 m/s and 15 m/s respectively. If both the trains are of equal length 140 m each, then how much time will take to cross each other?
 - (A)4s (B)8s (C)16s (D)2s

Rotation

Q.3 Two blocks tied with a massless string of length 3 m are placed on a table rotating at an angular speed $\omega = 4$ rad/s. The axis of rotation is 1 m from the bock having 1 kg mass. Assume that the surface below 2 kg block is smooth and that below the 1 kg block is rough. Find the tension (T) in the string and the frictional force (f) acting on the 1 kg block. Take $g = 10 \text{ m/s}^2$

(A)T = 64N, f = 48N

(C)T = 8N, f = 4N

Pulley Mass system

Q.4 In the pulley arrangement shown in figure, pulley P_2 is movable. Assuming the coefficient of friction between the block having mass m and the surface is μ , find the maximum value of M for which m is at rest.

Circular Motion

Q.5 Two particles are joined together by a string of total length 2L as shown in figure. Both the particles are performing uniform circular motion about point 0 in a horizontal plane. If the speed of the outermost particle is v_0 . Then the ratio of tension in string AB and OA will be:

Work done

Q.6 A force F acting on a particle varies with the particle varies the position x as shown in figure. The work done by this force in displacing the particle from x = -2 m to x = 0

(A)+10J

(D)-10]

Power

An engine pumps up 100 kg of water through a height of 10 m in 5 s. Given that the efficiency of the Q.7 engine is 60%, what is the power of the engine? (Take $g = 10 \text{ m/s}^2$)

(A) 33 kW	(B) 3.3kW	(C) 0.33kW	(D) 0.033kW
ircular Motion			

Ci

Q.8 A particle is suspended from a fixed point by a string of length l.It is projected from the equilibrium position with a velocity $v = 2\sqrt{gl}$ shown in the figure below, which of the following statements is true?

(A) The particle reaches point C and undergoes free fall along the diameter CA.

(B) The particle reaches a point between B and C where tension and velocity are both zero and free falls. (C) The particle reaches a point between B and C, where tension is zero but velocity is not zero, and follows a parabolic path.

(D) The particle never reaches point B and it oscillates between B and C.

Relative Motion

Q.9 A man of mass M stands at one end of a plank of length L which is at rest on a frictionless horizontal surface. The man walks to the other end of the plank. If mass of the plank is $\frac{M}{2}$, distance that the man moves relative to the ground is

(A)L (B)
$$\frac{L}{4}$$
 (C) $\frac{3L}{4}$ (D) $\frac{L}{3}$

Coefficient of restitution

A particle loses 25 % of its kinetic energy during head on collision with another identical particle Q.10 initially at rest. The coefficient of restitution will be

Collision

Q.11 A ball of mass 20 kg is suspended from a massless string of length 5 m as shown in figure. A bullet of mass 5 kg moving with velocity v₀ m/s collides with the ball and sticks to it. Find the minimum value of v_0 so that the combined mass completes the vertical circular motion. [Take $g = 10 \text{ m/s}^2$]

Q.15 A graph of mass ejected vs time is shown in the figure below [Given $\ln\left(\frac{50}{49}\right) = 0.02$]. Find the velocity of the rocket after 5 s, if initial launch velocity is 200 m/s and velocity of ejected fuel w.r.t the rocket is 20 m/s. [takeg = 10 m/s² and initial mass of the rocket is 500 kg]

Fuel Consumption

Q.16 A rocket with an initial mass m = 2000 kg is launched vertically upwards. The rocket burn fuel at the rate of 20 kg/s. The burnt material is ejected vertically downwards with a speed of 4000 m/s relative to the rocket. If burning stops after 30 seconds, find the maximum velocity of the rocket. (Take $g = 10 \text{ m/s}^2$)

Q.19 A rocket with an initial mass of M = 2000 kg is launched vertically upwards form rest, under gravity. The rocket burns fuel at the rate of 20 kg/s. The burnt matter is ejected vertically downwards with a speed of 4000 m/s relative to the rocket. Velocity of the rocket after 60 secis 2000 m/s. Find the mass of rocket gas ejected in 60 sec. [Take $g = 10 \text{ m/s}^2$]

Elastic Collision

Q.20 A ball A collides elastically with another identical ball B with velocity 10 m/s at an angle of 30° with the line joining their centers C₁ and C₂. Select the correct alternative(s).

(A)Velocity of ball A after collision is 5 m/s.

(B)Velocity of ball B after collision is $5\sqrt{3}$ m/s.

(C)Both the balls move at right angles after collision.

(D)Kinetic energy will not be conserved here, because collision is not head on.

ANSWER KEY

Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(D)	(A)	(B)	(A)	(A)	(C)	(C)	(C)	(B)	(A,C)
WORK SHEET										
Q.	1	2	3	4	5	6	7	8	9	10
Sol.	(C)	(B)	(A)	(A)	(A)	(D)	(B)	(C)	(B)	(C)
Q.	11	12	13	14	15	16	17	18	19	20
Sol.	(C)	(C)	(A)	(A)	(B)	(C)	(B)	(B)	(B)	(A,B,C)