

Q.1	If $A \equiv (t^2, 2t)$, $B \equiv (\frac{1}{t^2}, -$	$-\frac{2}{t}$) and $S \equiv (1,0)$, then $\frac{1}{SA}$	$+\frac{1}{SB}$ is equal to	
	(a) 2	(b) $\frac{1}{2}$	$(c)\frac{1}{5}$	(d) 1
Q.2	Determine the area of t	he quadrilateral formed b	by the points (2, 1), (4, 3),	(-1, 2), and (-3, -2).
	(a) 18	(b) 36	(c) 54	(d) 72
Q.3		the points (1, a), (2, b), and		
0.4	(a) $a + b = 6$ The midneinte of the eigenvector		(c) $a + b = 3$	
Q.4		ides AB, BC, and CA of tria e the centroid of triangle A		, 1), (-4, -5), allu (2, -5)
	(a) (4,1)	(b) $(\frac{4}{3}, -3)$		(d) $\left(-\frac{4}{2},3\right)$
Q.5	Find the coordinates of	the in center of the triang	5	3
·	(a) Does not exist	(b) (-2, 3)	(c) (2,-3)	(d) (3, 3)
Q.6	If the line segment com	necting the points (a, b) an	nd (c, d) forms a right ang	le at the origin, then
	(a) $ac - bd = 0$	(b) $ac + bd = 0$	(c) $ab + cd = 0$	(d) ab - cd = 0
Q.7		represent the endpoint		a right-angled isosceles
		e the coordinates of the th		
	(a) (8,-2)	(b) (-8, 2)	(c) (8, 8)	(d) (0, 0)
Q.8	If a line forms a 30° ang of the line?	le in the clockwise directi	on with the positive y-axi	s, then what is the slope
	(a) $\sqrt{3}$	(b) $-\sqrt{3}$	(c) $\frac{1}{\sqrt{2}}$	$(d) - \frac{1}{\sqrt{2}}$
Q.9	Find the angle between	the lines represented by	the equations $3x + y - 7 =$	= 0 and x + 2y + 9 = 0.
-	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{4}$
Q.10	Determine the value of	k such that the lines repre	esented by the equations l	xx + y = 6 and $2x - 5y =$
	1 are perpendicular to	each other.		
	(a) $-\frac{5}{2}$	(b) $\frac{2}{5}$	(c) $\frac{5}{2}$	$(d) - \frac{2}{5}$
Q.11	Find the equation of the	e line that is perpendicula	r = 0 and pa	sses through the origin.
	(a) $3x + y = 0$	(b) $x + 3y = 0$	(c) 3x - y = 0	(d) x - 3y = 0
Q.12	Determine the x-axis in	tercept of the line represe		+ 12y - 60 = 0.
	(a) 12	(b) -12	(c) 5	(d) -5
Q.13		ne line that intercepts the		n equal magnitudes but
		ses through the point (2, 2) (b) $x + y = 5 = 0$		(d) $2x + 1 = 0$
Q.14	(a) $x - y + 1 = 0$ Find the equation of the	e line with x-intercept 3 a	(c) $2x + y - 7 = 0$	(u) $2x - y - 1 = 0$
Qili	(a) $3x + 8y - 24 = 0$	e fine with x-intercept 5 a	(b) $8x + 3y - 24 = 0$	
	(c) $3x + 8y + 24 = 0$		(d) $8x + 3y + 24 = 0$	
Q.15		f the line passing through t	the point (2, 3) with a slop	be of $\sqrt{3}$ in its symmetric
	form or parametric for	m.		
	(a) $\frac{x-2}{\frac{\sqrt{3}}{2}} = \frac{y-3}{\frac{1}{2}} = r$		(b) $x - 2 = y - 3 = r$	
	(c) $\frac{\frac{2}{x-2}}{\frac{1}{2}} = \frac{y-3}{\frac{\sqrt{3}}{2}} = r$		$(d)\frac{x-1}{2} = \frac{y-3}{\sqrt{3}} = r$	
	$2 \frac{1}{2}$		2 10	

Q.16	When expressed in normal form, the		_				
	(a) $\tan^{-1}(\frac{2}{3})$ (b) $\tan^{-1}(-$	$(c) \tan^{-1}(-\frac{2}{3})$	(d) $\tan^{-1}(\frac{3}{2})$				
Q.17	Determine the interval of values for α , such that the points (α , α^2) and (0, 0) lie on the same side of the line $3x + y - 10 = 0$.						
		$(5) \cup (2, \infty)$ (c) (-5,2)	(d) (-2,5)				
Q.18	Identify the point that lies on the line						
0.40	(a) (2,1) (b) (0,0)	(c) (1,2)	(d) (-1,1)				
Q.19	Among the following points, which $y = 5$ and the apprdicate average	one is located inside the triang	le formed by the equation				
	x + y = 5 and the coordinate axes? (a) (2,2) (b) (3,3)	(c) (0,0)	(d)(-1,-1)				
Q.20	(a) (2,2) (b) (3,3) If (a, a ²) falls inside the angle made b						
Q.20	belong to.	by the initial equations $y = \frac{1}{2}, x > \frac{1}{2}$	$\int dh dy = 5x, x > 0$ then d				
		(a) $(2, \infty)$	(d) $(\frac{1}{2}, 3)$				
	2 2	(c) (3,∞)					
Q.21	The line denoted by $\frac{x}{5} + \frac{y}{b} = 1$ passes		ne K is parallel to L and has				
	the equation $\frac{x}{c} + \frac{y}{3} = 1$ then the distant	ce between L and K is					
	(a) $\frac{17}{\sqrt{15}}$ (b) $\frac{23}{\sqrt{17}}$	(c) $\frac{23}{\sqrt{15}}$	(d) $\sqrt{17}$				
Q.22	The base of an equilateral triangle is	given by the equation $x + y = 2$,	and its vertex is located at				
	(2, -1). Calculate the area of the triang						
	(a) 1 (b) $\frac{1}{\sqrt{3}}$	(c) $\frac{1}{2\sqrt{3}}$	(d) $\sqrt{\frac{3}{2}}$				
0.22	¥5	243	$\sqrt{\sqrt{2}}$				
Q.23	Determine the area enclosed by the cu						
	(a) $\frac{1}{4}$ (b) $\frac{1}{2}$	(c) 1	(d) 2				
Q.24	A light ray moving along the line x +						
	the opposite side of the x-axis by char	0	c-axis. Provide the equation				
	of the line along which the refracted r						
	$(a) x + \sqrt{3}y - 5\sqrt{3} = 0$	(b) $x - \sqrt{3}y - 5\sqrt{3}y$					
0.25	(c) $\sqrt{3}x + y - 5\sqrt{3} = 0$	(d) $\sqrt{3}x - y - 5\sqrt{3}$					
Q.25	A light ray travels along the line passi the x-axis. If the reflected ray passes the		_				
	(a) $(\frac{26}{7}, 0)$ (b) $(0, \frac{26}{7})$						
Q.26		,					
Q.20	A person initiates the journey from point P(-3, 4) and aims to reach point Q(0, 1) while making contact with the line $2x + y = 7$ at the point R. Find the coordinates of R on the line that ensures						
	the person travels the shortest distan						
	-	(c) $(0, \frac{42}{25})$	(d) $\left(\frac{42}{2\pi}, 0\right)$				
Q.27	Consider three points: $P = (-1, 0), Q =$	20	20				
•	bisector of $\angle PQR$.		5				
	(a) $\sqrt{3}x + y = 0$ (b) $x + (\frac{\sqrt{3}}{2})$	$y = 0$ (c) $(\frac{\sqrt{3}}{2})x + y = 0$	(d) $x - \sqrt{3}y = 0$				
Q.28	The equation of a line with a slope –	and which intersects with the lin	nes $4x + 3y - 7 = 0$ and				
•	8x + 5y - 1 = 0 is	2					
	(a) $3x + 2y - 63 = 0$	(b) $2y - 3x - 2 = 0$)				
	(c) $3x + 2y - 2 = 0$	(d) $3x - 2y - 2 = 0$)				
Q.29	The equations representing the side	s of a triangle are $x = 0, y = m_1 x$	$x + c_1$ and $y = m_2 x + c_2$.the				
	area of triangle is.	_					
	(a) $\left \frac{c_1-c_2}{m_1-m_2}\right $ (b) $\frac{1}{2} \left \frac{(c_1-c_2)}{m_1-m_2}\right $	$\frac{1}{2}$ (c) $\frac{1}{2} \left \frac{c_1 - c_2}{(m_1 - m_2)^2} \right $	(d) $\left \frac{(c_1 - c_2)^2}{(m_1 - m_2)^2} \right $				
Q.30	If the lines $x + 2ay + a = 0$, $x + 3by + a = 0$		· · · · · ·				
-	the values of a, b, c are in.	-					
	(a) A.P. (b) G.P.	(c) H.P.	(d) A.G.P.				

Q.31	The point (1, 2) is given in a rectangular Cartesian coordinate system. If the axes are rotated by an angle of 45° in the positive direction without altering the origin, determine the coordinates of the point in the new system.				
	(a) $\left(\frac{3}{\sqrt{2}}, 1\right)$		(c) $\left(\frac{3}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$	(d) $\left(\frac{3}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	
Q.32		O by an angle θ . If the co	dinate system with O as th ordinates of P in the new		
	(a) $\frac{4}{5}$	(b) $\frac{2}{3}$	(c) $\frac{3}{2}$	$(d)\frac{5}{4}$	
Q.33			1) undergoes a counter-cl the new position, determi		
	(a) $(2\sqrt{2}, \frac{\sqrt{3}}{\sqrt{2}})$	(b) (1,1)	(c) $\left(\frac{4+\sqrt{2}}{2}, \frac{\sqrt{3}}{\sqrt{2}}\right)$	(d) $(2, \frac{\sqrt{3}}{2})$	
Q.34		n fixed, the coordinate axe elation to the new axes is	s undergo a rotation by ar $\frac{x}{p} + \frac{y}{q} = 1$, then	angle θ . If the equation	
	(a) $a^2p^2 + b^2q^2 = 1$		(b) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{b^2} + \frac{1}{a^2}$		
	(c) $a^2 + b^2 = p^2 + q^2$		(d) $\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{a^2}$		
Q.35	Centroid of the triangle,	with equations for its sic	les as $12x^2 - 20xy + 7y^2$	= 0 and	
	2x - 3y + 4 = 0 is				
	(a) $(\frac{8}{3}, \frac{8}{3})$	(b) $\left(\frac{4}{3}, \frac{4}{3}\right)$	(c) (2,2)	(d) (1,1)	
Q.36	given by $x^2-3xy + 2y^2 =$		n and perpendicular to th	ne pair of straight lines	
	(a) $2x^2 - 3xy + y^2 = 0$		(b) $2x^2 + 3xy - y^2 = 0$		
Q.37	(c) $2x^2 + 3xy + y^2 = 0$ Determine the value of the va	n for which the equation 3	(d) $2x^2 - 3xy - y^2 = 0$ $x^2 - 2hxy + 4y^2 = 0$ repres	ents a pair of coincident	
Q .07	lines.			F	
	(a) $\pm 3\sqrt{3}$	(b) $\pm \sqrt{3}$	(c) $\pm 2\sqrt{3}$	(d) $\pm \sqrt{6}$	
Q.38	and (0, 4) is 2, is:	-	the triangle formed by the		
0.00	(a) 1	(b) 2	(c) 0	(d) 4	
Q.39		-	ays rational, then the trian (c) Right angle	•	
Q.40			is deleted real neighborho		
	possible angle between			Z	
	(a) 0°	(b) 90°	(c) 60°	(d) 45°	
Q.41		$_1 \pm rsin \theta$ be the equation	of straight line then the p	parameter in this	
	equation is. (a) θ	(b) x ₁	(c) y ₁	(d) r	
Q.42			n through B and C are x +		
	point B must be.				
Q.43	(a) $(1,4)$	(b) $(7, -2)$	(c) (4,1) gle is x + y = 2, and the ve	(d) $(-2,7)$	
Q.43	then the length of the si	de of the triangle is equiv	alent to.	(2, 1),	
	(a) $\sqrt{\frac{2}{3}}$	(b) $\sqrt{\frac{1}{3}}$	(c) $\sqrt{\frac{3}{2}}$	(d) $\sqrt{3}$	
Q.44	The equation of a straig (1, 2) and (3, 4) is	ht line that is equally incl	ined to the axes and equic	listant from the points	
	(a) $x + y + 1 = 0$	(b) $x - y + 1 = 0$	(c) $x - y - 1 = 0$	(d) $x + y - 1 = 0$	

Q.45	The equation of the bisector of the acute angle between the lines $3x - 4y + 7 = 0$ and $12x + 5y - 2$						
Q.15	= 0 is						
	(a) $11x + 3y - 9 = 0$ (b) $3x - 11y + 9 = 0$						
	(c) $11x - 3y - 9 = 0$ (d) $11x - 3y + 9 = 0$						
Q.46	The potential values of for which the following three lines $x + y = 1$, $\lambda x + 2y = 3$, $\lambda^2 x + 4y + 9 = 0$						
	are concurrent is.						
	(a) 2 (b) 14 (c) -15 (d) -13						
Q.47	The straight line $ax + by = 1$ make with the curve, $px^2 + 2axy + qy^2 = r a$ chord which subtends						
	a right angel at the origin. Then						
	(a) $r(b^2 + q^2) = p + a$ (b) $r(b^2 + p^2) = p + q$						
	(c) $r(a^2 + b^2) = p + q$ (d) $(a^2 + p^2)r = q + b$						
Q.48	The middle point of the line segment joining $(3, -1)$ and $(1,1)$ is shifted by two units (in the sense						
	increasing y) perpendicular to the line segment. Then the coordinate of the point in the new						
	position is.						
	(a) $(2 - \sqrt{2}, \sqrt{2})$ (b) $(\sqrt{2}, 2 + \sqrt{2})$ (c) $(2 + \sqrt{2}, \sqrt{2})$ (d) $(\sqrt{2}, 2 - \sqrt{2})$						
Q.49	The intersection point of the straight line $3x + 5y = 1$ and $(2 + c)x + 5c^2y = 1$ where $c \neq 1$ and						
	$-\frac{3}{2}$, is						
	(a) $\left(\frac{1}{3c+2}, \frac{3}{3c+2}\right)$ (b) $\left(\frac{c-1}{3c+2}, \frac{-1}{5(3c+2)}\right)$ (c) $\left(\frac{c-1}{3c+2}, \frac{1}{5(3c+2)}\right)$ (d) $\left(\frac{c+1}{3c+2}, \frac{-1}{5(3c+2)}\right)$						
Q.50	As the endpoints A and B of a straight line segment of constant length c move along the fixed						
Q.50	rectangular axes OX and OY, respectively, completing the rectangle OAPB, determine the locus of						
	the foot of the perpendicular drawn from P onto AB.						
	(a) $x^{2/3} - y^{2/3} = c^{2/3}$ (b) $x^{1/3} + y^{1/3} = c^{1/3}$						
	(c) $x^{2/3} + y^{2/3} = c^{2/3}$ (d) $x^{1/3} - y^{2/3} = c^{1/3}$						
Q.51	Consider the variable line given by $y = mx$, where m is a variable. This line intersects the lines						
·	2x + y = 2 and $x - 2y + 2 = 0$ at points P and Q. Determine the locus of the midpoint of the segment						
	PQ.						
	(a) $2x^2 + 3xy - 2y^2 + x + 3y = 0$ (b) $2x^2 - 3xy - 2y^2 + x + 3y = 0$						
	(c) $2x^2 + 3xy + 2y^2 + x + 3y = 0$ (d) $2x^2 + 3xy - 2y^2 - x - 3y = 0$						
Q.52	A variable straight line passes through the points of intersection of the lines $x + 2y = 1$ and						
	2x - y = 1. It intersects the coordinate axes at points A and B. Find the locus of the midpoint of AB.						
	(a) $3xy = (x - y)$ (b) $3xy = x + y$ (c) $10xy = x + 3y$ (d) $xy = x + 3y$						
Q.53	If A($\cos \alpha$, $\sin \alpha$), B($\sin \alpha$, $-\cos \alpha$), C(2,1) are vertical of a triangle ABC. The locus of its centroid if						
	α varies is.						
	(a) $9x^2 + 9y^2 - 3x + 6y - 2 = 0$ (b) $9x^2 + 9y^2 - 12x + 6y - 3 = 0$						
0 54	(c) $9x^2 + 9y^2 - 12x - 6y + 3 = 0$ (d) $9x^2 + 9y^2 + 12x + 6y - 3 = 0$						
Q.54	Determine the locus of the midpoint of the intercept on the line $y = x + c$, created by the lines						
	2x + 3y = 5 and $2x + 3y = 8$, where c is a parameter.						
	(a) $2x + 3y + 13 = 0$ (b) $4x + 6y + 13 = 0$ (c) $4x + 6y - 13 = 0$ (d) $2x + 3y - 13 = 0$						
	(u) 2x + 3y - 13 = 0 $(u) 2x + 3y - 15 = 0$						

- **Q.1** The slope of the straight line that goes through the points (1, 5) and (-2, -4) is _____
- **Q.2** Determine the values of x and y for a straight line passing through the points (x, -9), (2, 5), and (5, y) with a slope of 2.
- **Q.3** Calculate the slope of the line that passes through the given point.

(a)
$$(1, 2); (4, 2)$$
 (b) $(4,-6); (-2,-5)$

- **Q.4** Determine the value of y so that the line passing through (3, y) and (2, 7) is parallel to the line passing through (-1, 4) and (0, 6).
- **Q.5** If the sum of the slopes of two perpendicular straight lines is equal to $\frac{3}{2}$, determine the slopes of these lines.
- **Q.6** For three points P (h, k), Q (x_1 , y_1), and R (x_2 , y_2) lying on a line, demonstrate the following relationship: $(h x_1)(y_2 y_1) = (k y_1)(x_2 x_1).$
- **Q.7** Calculate the equations of the sides of the triangle with vertices at (2,1), (-2,3), and (4,5).
- **Q.8** Determine the equation of the straight line that goes through the given points.

(a)
$$(-1,-2)$$
 and $(-5,-2)$ (b) $(1,-1)$ and $(3,5)$

- **Q.9** (a) Determine the equation of the straight line that goes through the point (0, 1) and forms a 60-degree angle with the x-axis.
 - (b) Calculate the equation of the straight line that goes through the point (2, 2) and is angled at 45 degrees relative to the x-axis.
- **Q.10** Determine the equation of the straight line that:
 - (a) Crosses the x-axis 3 units to the left of the origin with a slope of -2.
 - (b) Crosses the y-axis 2 units above the origin and forms a 30° angle with the positive x-axis.
- **Q.11** If P (a, b) serves as the midpoint of a line segment between the coordinate axes, demonstrate that the equation of the line can be represented as $\frac{x}{a} + \frac{y}{b} = 2$
- **Q.12** A line forms a triangle with the coordinate axes, and the area of this triangle is $54\sqrt{3}$ square units. The perpendicular line drawn from the origin to the line makes a 60° angle with the x-axis. Determine the equation of the line.
- **Q.13** Express the equation x + 2y = 3 in intercept form.
- **Q.14** Convert each of the following equations into slope-intercept form and determine their slopes and y-intercepts:
 - (a) 7x + 3y 6 = 0 (b) 3x + 3y = 5 (c) y = 0
- **Q.15** convert each of the following into perpendicular form and determine the value of 'p':
 - (a) 3x 4y + 10 = 0 (b) $\sqrt{3}x + y 8 = 0$
- **Q.16** Determine the length of the perpendicular line drawn from vertex B of triangle ABC to the median through point C, given that point A is located at (-10, -13), point B is at (-2, 3), and point C is at (2, 1).
- **Q.17** Find the equation of the line that is equidistant from parallel line represented by

9x + 6y - 7 = 0 and 3x + 2y + 6 = 0

- **Q.18** Classify the following pairs of lines as coincident, parallel, perpendicular or intersecting:
 - (a) 6x + 14y 16 = 0 12x + 28y 32 = 0
 - (b) 3x 4y = 8, 3x + 4y = 11
 - (c) 5x 2y = 7 2y 5x = -7

Q.19 Demonstrate that the origin is at an equal distance from three straight lines:

4x + 3y + 10 = 0,5x - 12y + 26 = 0 and 7x + 24y = 50

- **Q.20** Determine the angle of inclination of the line given by the equation x y + 3 = 0 with respect to the positive direction of the x-axis.
- **Q.21** Determine the angle formed by the lines connecting the points (3, 1) and (2, 3), as well as the points (5, 2) and (9, 3).
- **Q.22** Demonstrate that the line 5x 2y + 10 is the mid-parallel between the lines 5x 2y + 90 and 5x 2y + 7 = 0.
- **Q.23** Determine the value of k if the lines 2x + y = 30, 5x + ky = 30, and 3x y 20 are concurrent.
- **Q.24** Demonstrate collinearity for the points (a, 0), (0, b), and (3a, 2b). Additionally, determine the equation of the line that passes through these points.
- **Q.25** From the point P(3,5), draw a line inclined at an angle of 45° with the positive x-axis. The line intersects the line x + y = 6 at point Q. Calculate the length of PQ.
- **Q.26** If the points (a, 0), (0, b), and (3, 4) are collinear, then demonstrate that. $\frac{3}{a} + \frac{4}{b} = 1$.
- **Q.27** Determine the equations of the lines that pass through the point (1, 0) and are at a distance of $\frac{\sqrt{3}}{2}$ from the origin.
- **Q.28** Determine the equation of one side of an isosceles right-angled triangle, given that its hypotenuse is defined by 3x + 4y = 4, and the vertex opposite to the hypotenuse is located at (2, 2).
- **Q.29** Determine the reflection of the point (4, -13) across the line 5x + y + 6 = 0.
- **Q.30** If a square has one diagonal along the line 8x 15y = 0, and one of its vertices is at (1, 2), determine the equation of the sides of the square passing through this vertex.

ANSWER KEY – LEVEL – I										
Q.	1	2	3	4	5	6	7	8	9	10
Ans.	d	а	С	b	а	b	а	а	d	С
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	b	а	а	b	С	а	С	С	а	d
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	b	С	b	С	а	а	а	b	b	С
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	d	d	С	С	b	С	С	С	d	b
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	d	b	а	С	d	С	С	С	d	С
Q.	51	52	53	54	55	56	57	58	59	60
Ans.	b	С	С	С						

ANSWER KEY – LEVEL – II

1.	3					
2.	x= −5,	y =11				
3.	(a)	0	(b)	$-\frac{1}{6}$		
4.	9					
5.	2 and \cdot	$-\frac{1}{2}$				
7.	x + 2y	$x - 4 = 0 \qquad \qquad x - 3y$	+ 11 =	$0 \qquad 2x - y - 3 = 0$)	
8.	(a)	y+2=0	(b)	-3x+y+4=0		
9.	(a)	$\sqrt{3}x-y+1=0$	(b)	x - y = 0		
10.	(a)	2x+y+6=0	(b)	$x - \sqrt{3}y + 2\sqrt{3} = 0$		
12.	$x + \sqrt{3}$	$\overline{3}y - 18 = 0$				
13.	$\frac{x}{3} + \frac{y}{\frac{3}{2}}$	= 1				
14.		$y = \frac{-7}{3}x + 2; -\frac{7}{2}, 2$		3 3	(c)	y = 0.x + 0;0,0
15.	(a)	$\frac{-3}{5}x + \frac{4}{5}y = 2; p = 2$	(b)	$\frac{\sqrt{3}}{2}x + \frac{1}{2}y = 4; p = 4$		
16. 17.	4 18x +	12y + 11 = 0				
18.	(a)	coincident	(b)	Intersecting	(c)	Coincident