

Q.1	A child possesses 2 pencils and 3 erasers. How many ways can he choose one pencil and one eraser?								
	(a) 5	(b) 6	(c) 8	(d) 9					
Q.2	A father, accompanied by his 8 children, visits the zoo in groups of 3 at a time, ensuring the doesn't take the same set of 3 children together more than once. The number of visits he will to the garden is:								
	(a) 336	(b) 112	(c) 56	(d) None of these					
Q.3	Determine the count of while allowing for repet	4-letter words that can l ition.	be created from the letter	s in the word "PULSE"					
	(a) 120	(b) 125	(c) 625	(d) 3125					
Q.4	Determine the count of without repetition.	4-letter words that can	be formed from the letter	s in the word "PULSE"					
	(a) 20	(b) 60	(c) 120	(d) 240					
Q.5	Determine the count of with the allowance of re	5-letter words that can lepetition.	be created from the letter	's in the word "PULSE"					
	(a) 25	(b) 120	(c) 125	(d) 3125					
Q.6	Calculate the quantity "PULSE" without allowi	of 5-letter words that can ng repetition.	an be constructed from t	he letters in the word					
	(a) 20	(b) 60	(c) 120	(d) 240					
Q.7	Determine the count of	5-digit numbers that can	be generated without repo	eating any digits.					
	(a) 27216	(b) 50400	(c) 100000	(d) 90000					
Q.8	If an event can occur in 'm' different ways, followed by another event that can occur in 'n' different ways, then the total number of occurrences of the events in the given order is								
	(a) m + n	(b) m-n	(c) mn	$(d)\frac{m}{n}$					
Q.9	If there are 4 paths to t from Delhi to Kanpur ar	ravel from Delhi to Kanp nd come back to Delhi via	ur, then the number of wa a different path is	ays a person can travel					
	(a) 4	(b) 8	(c) 12	(d) 16					
Q.10	If there are four paths for traveling from Delhi to Kanpur, then in how many ways can a perso travel from Delhi to Kanpur and return to Delhi via the same path?								
	(a) 4	(b) 8	(c) 12	(d) 16					
Q.11	If there are four distinct can a person travel from	t paths for traveling from 1 Delhi to Kanpur and the	Delhi to Kanpur, then ho n return to Delhi?	w many different ways					
	(a) 4	(b) 8	(c) 12	(d) 16					
Q.12	If $(1 + x)^{15} = C_0 + C_1 x + C_1 x$ (a) 14.2 ¹⁴	+ $C_2 x^2$ + + $C_{15} x^{15}$, then (b) $13.2^{14} + 1$	n C ₂ + 2C ₃ + 3C ₄ + \cdots + 1 (c) 13.2 ¹⁴ - 1	4C ₁₅ Is equal to. (d) None of these					
Q.13	If the binomial expansion	on of $(a + bx)^{-2}$ is $\frac{1}{4} - 3x$	$+\cdots$, then find (a, b)						
	(a) (2, 12)	(b) (2, 8)	(c) (-2,-12)	(d) None of these					
Q.14	If a_1, a_2, a_3, a_4 are the co then $\frac{a_1}{a_1 + a_3} + \frac{a_3}{a_1 + a_3}$ is equ	efficients of any four cons al to.	secutive terms in the expa	nsion of $(1+x)^n$,					
	(a) $\frac{a_1 + a_2}{a_2 + a_3}$	(b) $\frac{1}{2} \frac{a_2}{(a_2 + a_m)}$	(c) $\frac{2a_2}{a_2+a_8}$	(d) $\frac{2a_3}{a_2+a_8}$					

Q.15	Let n be an odd integer. If sin $n\theta = \sum_{r=0}^{n} b_r \sin^r \theta$ for every value of θ , then							
	(a) $b_0 = 1, b_1 = 3$		(b) $b_0 = 0, b_1 = n$					
	(c) $b_0 = -1, b_1 = n$		(d) $b_0 = 0, b_1 = n^2 - 3$	Sn + 3				
Q16	If n is odd, then $C_0^2 - C$	$C_1^2 + C_2^2 - C_3^2 + \dots + (-1)^n$	C_n^2 is equal to					
	(a) 0	(b) 1	(c) ∞	$(d) \frac{n!}{(\frac{n}{2})^2!}$				
0.17	$C_0^{15} \cdot C_5^{.5} + C_1^{15} C_4^{.5} +$	$C_2^{15}C_3^{.5} + C_3^{15}C_2^{.5} + C_4^{.5}$	$^{15}C_{1}^{5}$ is equal to	.2				
C	(a) $2^{20} - 2^5$	(b) $\frac{20!}{5!15!} - 1$	(c) $\frac{20!}{5!15!} - 1$	$(d)\frac{20!}{5!15!} - \frac{15!}{5!10!}$				
Q.18	$\frac{1}{1!(n-1)!} + \frac{1}{2!(n-2)!} + \frac{1}{5!(n-2)!}$	$\frac{1}{1}$ + is equal to						
	(a) $\frac{2^n}{2}$	(h) $\frac{2^{n-1}}{2}$	(c) 0	(d) None of these				
0 10	$\frac{(a)}{n!}$	n!	and higher nowers of y	can be neglected then				
Q.17	In the value of x is sufficiently small that x 5 and ingher powers of x call be neglected, then $(1+x)^{3/2}-(1+x)^3$							
	$\frac{1}{(1-x)^{1/2}}$ can be approximated as.							
	$(a)\frac{x}{2}-\frac{3}{8}x^2$	(b) $-\frac{3}{8}x^2$	(c) $3x + \frac{3}{8}x^2$	(d) $1 - \frac{3}{8}x^2$				
Q.20	If $(1 + 2x + x^2)^5 = \sum_{i=1}^{3} x_i^2$	$\sum_{k=0}^{15} a_k x^k$, then $\sum_{k=0}^{7} a_{2k}$ is	s equal to					
	(a) 128	(b) 156	(c) 512	(d) 1024				
Q.21	If x^{2r} occurs in $\left(x + \frac{2}{x^2}\right)^{\frac{2}{r^2}}$	$\left(\right)^{n}$, then n – 2r must be o	of the form					
	(a) 3k-1	(b) 3k	(c) 3k+1	(d) 3k+2				
Q22	The coefficient of x ⁵³ ir	n the following expansion	$\sum_{m=0}^{100} {}^{100}C_m(x-3)^{100-m}$	$1 \cdot 2^{m}$ is				
·	(a) ¹⁰⁰ C ₄₇	(b) ¹⁰⁰ C ₅₃	$(c)^{-100} C_{53}$	(d) -100 C ₁₀₀				
Q.23	The term independent	of x in the expansion of ($\left(\sqrt{\frac{x}{3}+\frac{3}{2x^2}}\right)^{10}$ will be					
	(a) $\frac{3}{2}$	(b) $\frac{5}{-}$	$(c)^{\frac{5}{2}}$	(d) None of these				
0.24	The coefficient of t^{24} ir	the expansion of $(1 + t^2)$	$(1)^{12}(1 + t^{12})(1 + t^{24})$ is					
	(a) $C_6^{12} + 2$	(b) C_5^{12}	(c) C_6^{12}	(d) C_7^{12}				
Q.25	In the expansion of (x	$(\sqrt{x^2-1})^6 + (x - \sqrt{x^2-1})^6$	$(-1)^6$, the number of terms	, is				
•	(a) 7	(b) 14	(c) 6	(d) 4				
Q.26	In the binomial expansion of $(a - b)^n$, $n \ge 5$, the sum of 5 th and 6 th term is zero, then $\frac{a}{b}$ equal							
	(a) $\frac{5}{n-4}$	(b) $\frac{6}{n-5}$	(c) $\frac{n-5}{6}$	$(d)\frac{n-4}{5}$				
0 27	The coefficient of x^n in	the expansion of $\frac{(1+x)^2}{2}$	is	5				
Q.27	(a) $n^2 + 2n + 1$	(b) $2n^2 + n + 1$	$(a) 2n^2 + 2n + 1$	$(d) n^2 2 + 2n + 2$				
	(a) II + 2II + I	(0) 211 + 11 + 1	(0) 211 + 211 + 1	(u) II 2 + 2II + 2				
Q.28	The middle term in the	e expansion of $\left(1 - \frac{1}{x}\right)$ (1)	$(1 - x)^{n}$, is					
	(a) 2n C _n	(b) $^{-2n}$ C _n	(c) $^{-2n}$ C _{n-1}	(d) None of these				
Q.29	In the expansion of $(x + y)$	$\left(\frac{1}{x^2}\right)^{10}$, the constant te	rm, is					
	(a) ${}^{15}C_6$	(b) 0	(c) – ${}^{15}C_6$	(d) 1				
Q30	If the expansion in power of x of the function $\frac{1}{(1-ax)(1-bx)}$ is							
	$a_0 + a_1 x + a_2 x^2 + a_3 x$	$^3 + \cdots$, Then a_n is						
	(a) $\frac{a^n - b^n}{b - a}$	(b) $\frac{a^{n+1}-b^{n+1}}{b-a}$	(c) $\frac{b^{n+1}-a^{n+1}}{b}$	$(d) \frac{b^n - a^n}{b - a}$				
Q.31	The number of terms i	$n(1+x)^{101}(1+x^2-x)^1$	⁰⁰ is	D-a				
·	(a) 101	(b) 202	(c) 301	(d) 302				
Q.32	For what value of r the coefficient of $(r - 1)^{th}$ and $(2r + 3)^{rd}$ terms is the expansion of $(1 + x)^{12}$							
	are equal.							
0.00	(a) $r = 3$	(b) $r = 4$	(c) $r = 5$	(a) $r = 6$				
Q.33	if the middle term in th	the expansion of $(x^2 + \frac{1}{x})^n$	is 924x° then $n =$					
	(a) 10	(0) 12	(C) 14	(a) None of the se				

Q.34	The greatest coefficient			
-	(a) $\frac{(2n+1)!}{n!(n+1)!}$	(b) $\frac{(2n+2)!}{n!(n+1)!}$	$(c) \frac{(2n+1)!}{[(n+1)!]^2}$	$(d) \frac{(2n)!}{(n!)^2}$
Q.35	In the expansion of $(1 +$	$(3x + 2x^2)^6$ the coefficient	t of x ¹¹ is	
	(a) 144	(b) 288	(c) 216	(d) 576
Q.36	If the coefficients of x^2 a	nd x ³ in the expansion of	$(3 + ax)^9$ are the same, th	en the value of a is
	(a) $-\frac{7}{9}$	(b) $-\frac{9}{7}$	$(c)\frac{7}{9}$	(d) $\frac{9}{7}$
Q.37	The greatest integer less	than or equal to $(\sqrt{2} + 1)$) ⁶ is	
•	(a) 196	(b) 197	(c) 198	(d) 199
Q.38	The sum ${}^{10}C_1 + {}^{10}C_3 +$	${}^{10}C_5 + {}^{10}C_7 + {}^{10}C_9 equa$	ls	
	(a) 2 ⁹	(b) 2 ¹⁰	(c) $2^{10} - 1$	(d) 2 ⁹ – 1
Q.39	The sum $\frac{C_1}{C_2} + \frac{2C_2}{C_4} + \frac{3C_3}{C_2} - \frac{3C_3}{C_2}$	$+ \cdots + \frac{nC_n}{C_{n-1}}$ equals		
	(a) $\frac{n(n-1)}{n(n-1)}$	$(h) \frac{n(n+2)}{n(n+2)}$	$(c) \frac{n(n+1)}{n(n+1)}$	(d) $\frac{(n-1)(n-2)}{n-2}$
	$\begin{pmatrix} a \end{pmatrix}_2$	(b) ₂	(c) ₂	(u) ₂
Q.40	The sum $\frac{z_0}{1} + \frac{z_2}{3} + \frac{z_4}{5} + \frac{z_4}{5}$	$\frac{10}{7}$ equals		
	(a) $\frac{2^{n}}{n+1}$	(b) $\frac{2^{n+1}-1}{n+1}$	$(c)\frac{2^{n+1}}{n+1}$	(d) 2 ⁿ
0.41	The sum $1^2C_1 - 2^2C_2 +$	$3^{2}C_{3} - \cdots + (-1)^{n-1}n^{2}C_{n}$	equals	
•	(a) $\frac{n^2 \cdot 2^{n+1}}{2}$	(h) 0	$(c) \frac{2^{n+1}}{2}$	(d) $\frac{n^2(n+1)}{n^2(n+1)}$
~	(u) n+1 C_1 C_2		(c) _{n-1}	(u) ₂
Q.42	The sum of $C_0 - \frac{1}{2} + \frac{1}{3}$	$-\frac{1}{4} + \cdots \dots (n+1)$ ter	rms equals	2
	(a) $\frac{1}{n-1}$	(b) $\frac{n-1}{(n+1)^2}$	$(c)\frac{1}{n+1}$	(d) $\frac{2}{n+1}$
0.43	The sum $\frac{C_0}{C_1} - \frac{C_1}{C_1} + \frac{C_2}{C_2} - \frac{C_1}{C_2}$	$\frac{2}{3} + \cdots$ equals		
Q .10	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 1 \end{array}$	5 1 1	() ¹	
	(a) $\frac{1}{(n-1)(n+1)}$	(D) $\frac{1}{(n+1)(n+2)}$	(C) $\frac{1}{2(n-1)(n+1)}$	(d) U
Q.44	$3C_0 + 3^2 \frac{C_1}{2} + 3^3 \frac{C_2}{3} + \cdots$	$3^{n+1} \cdot \frac{C_n}{n+1}$ equals to		
	(a) $\frac{3^{n+1}-1}{2}$	(h) $\frac{3^{n+1}+1}{2}$	$(c) \frac{4^{n+1}-1}{2}$	(d) $\frac{4^{n-1}-1}{2}$
0.45	$\begin{pmatrix} a \end{pmatrix}_{n+1}$	$\binom{0}{n+1}$	(c) _{n+1}	(u) _{n+1}
Q.45	$c_0 = 3c_1 + 3c_2 + \cdots + (a) (n - 1)2^n$	(-1) [21] + 1] C_n equals (b) 0	$(c) n(n + 1)2^{n}$	(d) $(n-1)2^{n-1}$
0.46	$If S = C C \pm C C \pm$	\pm C and $\frac{S_{n+1}}{1} - \frac{1!}{1!}$	$\frac{5}{5}$ then value of n is equal:	(u) (li 1)2
Q.TU	$113_n = c_0c_1 + c_1c_2 + \cdots$	$\dots + C_{n-1}C_n$ and $S_n = 4$		
0.47	(a) 3,7	(b) $2,4$	(c) $1,3$	(d) 1,2
Q.47	In number of terms in the (a) 7	(x - 2y + 3)	(c) α	(d) 10
0.48	(a) 7 Coefficient of x^{11} in the a	(U) o expansion of $(2x^2 + x - 3)$	(0) 9	(u) 10
Q.10	(a) 384	(b) 192	(c) 572	(d) 64
0.49	The coefficient of two co	insecutive terms in the ex	pansion of $(1 + x)^n$ will be	e equal if
·	(a) n is any integer		(b) n is an odd integer	1
	(c) n is an even integer		(d) Nothing can be said i	n general
Q.50	If a_r is the coefficient of z	x^{r} in the expansion (1 + x	$(x + x^2)^n$, then $a_1 - 2a_2 + 3$	$a_3 - \cdots2na_{2n} =$
	(a) 0	(b) n	(c) -n	(d) 2n
Q.51	The coefficient of x^{50} in	$(1+x)^{41}(1-x+x^2)^{40}$ is	() 40 a 21 a	
0 50	(a) ${}^{41}C_3$	(b) 19800	(c) ${}^{40}C_2 \times {}^{21}C_1$	(d) 0
Q.52	The coefficient of x^{\prime} in the $(2r)^{\prime}$	the expansion of $(1 - 2x)$	$(2r)^{1/2}$ 1S	(2r)!
	(a) $\frac{(21)!}{(r!)^2}$	(b) $\frac{(21)!}{2^{r}(r!)^{2}}$	(c) $\frac{(21)!}{(r!)^2 2^{2r}}$	(d) $\frac{(21)!}{2^{r}(r+1)!(r-1)!}$
Q.53	$1 + \frac{1}{2}x + \frac{1.4}{2.6}x^2 + \frac{1.4.7}{2.60}x^3$	+ is equal to		
	(a) x	(b) $(1 + x)^{1/3}$	(c) $(1-x)^{1/3}$	(d) $(1 - x)^{-1/3}$
0.54	The first four term is the	expansion of $(1 - x)^{3/2}$ v	will be when $ \mathbf{x} < 1$	
~	(a) $1 - \frac{3}{2}x + \frac{3}{2}x^2 - \frac{1}{2}x^3$,	(h) $1 - \frac{3}{2}x - \frac{3}{2}x^2 - \frac{x^3}{x^3}$	
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		$\begin{array}{c} \mathbf{(0)} 1 \\ 2 \\ 3 \\ 2 \\ 3 \\ 2 \\ \mathbf{v}^3 \end{array}$	
	(c) $1 - \frac{3}{2}x + \frac{3}{8}x^2 + \frac{1}{16}x^3$		(d) $1 + \frac{3}{2}x + \frac{3}{8}x^2 + \frac{x^2}{16}$	
Q.55	If $(a + bx)^{-2} = \frac{1}{4} - 3x + \frac{1}{4} - 3x + \frac{1}{4} - \frac{1}{$	··· , then (a, b) =		
	(a) (2,12) ⁴	(b) (-2,12)	(c) (2, -12)	(d) (-2, -12)

Q.56	If the third term in the binomial expansion of $(1 + x)^m$ is $\frac{-1}{8}x^2$ then rational value of m, is.						
	(a) 2	(b) $\frac{1}{2}$	(c) 3	(d) 4			
Q.57	If the coefficient of r th term and $(r + 1)^{th}$ term in the expansion of $(1 + x)^{20}$ are in the ration 1:2 then r is equal to.						
	(a) 6	(b) 7	(c) 8	(d) 9			
Q.58	The exponent of x occur	ring in the 7 th term of the	e expansion of $\left(\frac{ax}{2} - \frac{8}{bx}\right)^9$ is	5			
	(a) 3	(b) -3	(c) 5	(d) -5			
Q.59	The term containing a ³ b (a) 3 rd	 b⁴ in the expansion of (a - (b) 4th 	- 2b) ⁷ is (c) 5 th	(d) 6 th			
Q.60	In the expansion of $\left(\frac{x^3}{2}\right)$ -	$(\frac{2}{v^2})^{12}$, 5 th term from the	end is				
	(a) -7920x ⁻⁴	(b) 7920x ⁴	(c) 7920x ⁻⁴	(d) $-7920x^4$			
Q.61	The coefficient of a ^m and (a) Unequal	d a ⁿ (m, n are positive inte	eger) in the expansion of ((b) Equal	$(1 + a)^{m+n}$ are			
0.62	In the expansion of $(2 \pm$	$(\frac{1}{2})^n$ the coefficient of x^-	$^{-7}$ and x^{-8} are equal then x^{-8}	is equal to			
Q.02		$\frac{1}{3x}$, the coefficient of x					
0.63	(a) 51 If in the expansion of (1	(D) 52 \pm kv) ⁴ the coefficient of the	(C) 55 x ³ is 32 then the value of	(u) 50 k is equal to			
Q.05	(a) 2	(h) 4	(c) 8	(d) 1			
0.64	In the expansion of $(x +$	a) ⁵ , $T_2: T_3 = 1: 3$, then x:	a is equal to	() 1			
·	(a) 1:2	(b) 2: 1	(c) 2:3	(d) 3:2			
Q.65	$(1.003)^4$ is nearly equal	to					
	(a) 1.012	(b) 1.0012	(c) 0.988	(d) 1.003			
Q.66	The two consecutive term in the expansion of $(3 + 2x)^{74}$ which have equal coefficients, are						
	(a) 7^{th} and 8^{th}	(b) 11^{th} and 12^{th}	(c) 30^{th} and 31^{st}	(d) 31^{st} and 32^{nd}			
Q.67	If in the expansion of $(1 + x)$ " fifth term is 4 time the fourth term and fourth term is 6 times the						
	third term. Then the val	ue of n and x is. (b) 2.11	(a) 2 12	(d) 122			
0.00	(d) 11,2	(U) 2,11	(C) 3,12	(u) 12,5			
Q.08	n the binomial expansio	$n \text{ or } (a - b)^{-}, n \ge 5 \text{ the st}$		is zero then – equal.			
	(a) $\frac{n-5}{6}$	(b) $\frac{n-4}{5}$	(c) $\frac{5}{n-4}$	$(d)\frac{\delta}{n-5}$			
Q.69	If the coefficients of 2nd (a) $2n^2 - 9n + 7 = 0$, 3rd and 4 th terms in th	e expansion of $(1 + x)^{2n}$ a (b) $2n^2 + 5n + 7 = 0$	re in A.P., then			
	(c) $n^2 - 9n + 7 = 0$		(d) $n^2 + 9n - 7 = 0$				
Q.70	In the expansion of $(y^{1/2})$	$(x^{1/10})^{55}$, the number of (x^{1/10})^{55}	of terms free of radical sig	n are			
	(a) 5	(b) 6	(c) 50	(d) 56			

- Prove that the coefficient of middle term in the expansion of $(1 + x)^{2n}$ is equal to the sum of the 0.1 coefficient of two middle terms in $(1 + x)^{2n-1}$.
- The 3^{rd} , 4^{th} and 5^{th} terms in the expansion of $(x + a)^n$ are respectively 84, 280 and 560. Find the Q.2 value of x, a, and n.
- Find the interval of x, for which the expansion of $(8 3x)^{3/2}$ in term of power of x, is valid. Q.3
- Find the coefficient of x, in the expansion of $[\sqrt{1 + x^2} x]^{-1}$ in ascending power of x, when |x| < 1. Q4 Find sum of series $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \cdots$. If $\alpha = \frac{5}{2!3} + \frac{5.7}{3!3^2} + \frac{5.7.9}{4!3^3} + \cdots$... then find the value of $\alpha^2 + 4\alpha$. Q.5
- Q.6
- Q.7 Expand $(x^2 + 2a)^5$ by using binomial theorem.
- Expand $(x + y)^7$ by using the binomial theorem. Q.8
- Expand $(1 + 2x + x^2)^3$ by using the binomial theorem. Q.9
- Let P(n) be the statement : " n(n + 1)(n + 2) is a multiple of 12 ". Show that P(3) and P(4) are Q.10 true but P(5) is not true
- If 15^{th} term and 16^{th} term in the expansion of $(1 + x)^{30}$ are equal, then find the value of x. Q.11
- By using PMI, prove that for all $n \in \mathbb{N}$, $\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \frac{1}{7\cdot 10} + \cdots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$. Find the term involving a^2b^5 in the expansion of $(a 2b)^4(a + b)^3$ Q.12
- Q.13
- Write the fifth term in the expansion of $(2x^2 \frac{1}{2x^3})^{10}$, $x \neq 0$. Q.14
- Find the middle terms in the expansion of $(4x \frac{x^3}{2})^7$ Q.15
- If the ration of the fifth term from the beginning to the fifth term from the end in the expansion of 016 $(2^{\frac{1}{4}} + \frac{1}{2^{\frac{1}{4}}})^n$ is $\sqrt{6}$: 1 then value of n is equal to.
- The value of the coefficient of x^4 in the expansion of $(2 x + 3x^2)^6$ is Q.17
- The greatest value of n for which $9^7 7^9$ is divisible by 2^n is equal to 0.18
- By using the principal of mathematics induction, prove that for all $n \in \mathbb{N}$, $12^n + 2$. Q.19 5^{n-1} is divisible by 7
- In the expansion of $(1 x)^{2n-1} a_r$ is denoted as the coefficient of x^r , then prove that $a_{r-1} + a_{2n-r} = 0$ Q.20

ANSWER KEY – LEVEL – I										
Q.	1	2	3	4	5	6	7	8	9	10
Ans.	b	С	С	С	d	С	а	С	С	а
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	d	b	а	С	b	а	d	b	b	С
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	d	b	а	С	b	а	d	b	b	С
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	b	С	b	а	d	d	b	а	С	а
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	b	С	b	С	b	b	b	b	b	С
Q.	51	52	53	54	55	56	57	58	59	60
Ans.	d	b	d	С	d	b	b	b	С	С
Q.	61	62	63	64	65	66	67	68	69	70
Ans.	b	С	а	С	а	С	а	b	а	b

ANSWER KEY – LEVEL – II

- (x = 1, a = 2, n = 7) $x < \frac{8}{3}$ 2.
- 3.
- 4. 1
- $\sqrt{2}$ 5.
- 6. 23
- 10 16.
- 3660 17.
- 18 6