

Q.1	$\sum_{i=1}^{4} 2n + 3 = ?$							
	(a) 5	(b) 12	(c) 21	(d) 32				
Q.2	Is the sum of 1, 2, 3, and 4, which equals 10, considered a series?							
	(a) 1+2+3+4 only		(b) 10 only	(b) 10 only				
	(c) 1+2+3+4 and 1	.0	(d) neither 1+ 2+ 3	+ 4 nor 10				
Q.3	The sequence 1, 1, 2, 3, 5 is part of the Fibonacci sequence.							
	(a) True		(b) False	(b) False				
	(c) Can't be determi	ne	(d) None of these	(d) None of these				
Q.4	Which of the following relations produces the Fibonacci sequence?							
	$(a)a_n = a_{n-1} + a_{n-2}$	$(b)a_{n-1} = a_n + a_{n-2}$	$(c)a_{n-2} = a_n + a_{n-1}$	$(d)a_n = a_{n+1} + a_{n-2}$				
Q.5	Which of the followi	ing sequences is finite?						
	(a) 48, 24, 12	(b) 1, 2, 3	(c) 2,4,6,8,10	(d) 2,3,5,7,11,13,				
Q.6	The values of $7\log(\frac{16}{15}) + 5\log(\frac{25}{24}) + 3\log(\frac{81}{80})$ is.							
	(a) log 2	(b) log 3	(c) 1	(d)0				
Q.7	The value of $\frac{\log_a(\log_b f)}{\log_b f}$	The value of $\frac{\log_a(\log_b x)}{\log_b x}$ is						
č	log _b (log _a	(h) log h	(a) log h	(d) log o				
0.8	(a)log _b a The number of solut	$(D) \log_a D$ tions of log $(x - 1) - 2\log b$	$(c) = \log_a b$	$(u) = \log_b a$				
Q.0	(2) 2	(b) 1 $\log_2(x - 1) = 2\log_2(x - 1)$	(c) 6	(d) 7				
09	$\int \frac{d}{dt} = \int \frac{dt}{dt} = \int$	log z then	(0)0	(u) /				
Q.)	$(2) \times \langle y \rangle = 106_{z} y = 1$	$(h) \times \times \times > 7$	(c) $v < v < z$	(d) $y - y - z$				
0 10	$(a) x < y < z \qquad (b) x > y \ge z \qquad (c) x < y \le z \qquad (d) x - y - z$ If $2x = A_0 \pm 6$ find 15th term of the sequence							
Q.10	(a) 6	(h) 10	(c) 60	(d) 66				
0.11	Which statement an	nong the ones provided ab	ove is/are correct?	(u) 00				
~ ····	1 If (a_n) represents the nth term of an arithmetic progression (AD) then $a_n = a_{n+k} + a_{n-k}$							
	$\frac{1}{3}$							
	2. In an arithmetic progression (AP), if the sum of m terms is equal to the sum of n terms than the sum of $(m + n)$ terms is always zero.							
	$The sum to in Griters of the service \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$							
	5. The sum to minimity of the series $\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \cdots$ is $\frac{1}{2}$.							
	(a) (1) and (2)		(b) (2) and (3)					
	(b) (3) and (1)		(d) All (1), (2) and ((3)				
Q.12	If x, y, z are in arithmetic progression (AP), then the terms $1\frac{1}{\sqrt{x}+\sqrt{y}}, \frac{1}{\sqrt{z}+\sqrt{x}}, \frac{1}{\sqrt{y}+\sqrt{z}}$ are also in							
	(a)AP	(b) GP	(c) HP	(d) AP and HP				
0.13	If 1, $\log_2 \sqrt{(3^{1-x} + 2)^2}$	$\frac{1}{2}$, $\log_2(4.3^x - 1)$ are in AP	, then x equals					
·	(a) $\log_3 4$	(b)1 - log ₃ 4	(c)1-log ₄ 3	(d)log ₄ 3				
Q.14	If a_1, a_2, \dots, a_n are in AP with common difference d, then the sum of the series							
-	Sin d (cosec a_1 cosec a_2 + cosec a_2 cosec a_3 + … + cosec a_{n-1} cosec a_n) is							
	(a) sec a ₁ - sec a _n		(b) $\cot a_1 - \cot a_n$					
	(c) tan a_1 –tan a_n		(d) cosec $a_1 = cosec$	(d) cosec $a_1 = cosec a_n$				

Q.15	If (S_1) , (S_2) , and (S_3) represent the sums of the first (n_1) , (n_2) , and (n_3) terms, respectively, of an								
	arithmetic progression (A.P.), then $\frac{S_1}{n_1}(n_2 - n_3) + \frac{S_2}{n_2}(n_3 - n_1) + \frac{S_3}{n_3}(n_1 - n_2) =$								
	(a) 0	(b) 1	(c) $1 - \left(\frac{1}{10}\right)^{106}$	(d) None of these					
Q.16	If $a_1, a_2, a_3, \dots, a_{24}$ are in	arithmetic progression ar	nd						
	$a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$, then $a_1 + a_2 + a_3 + \dots + a_{23} + a_{24}$ is equal to								
	(a) 909	(b) 75	(c) 750	(d) 900					
Q.17	Let the sequence, a_1, a_2 ,	a_3, \dots, a_{2n} form an AP, the	n $a_1^2 - a_2^2 + a_3^2 - \dots + a_{2n}^2$	$_{-1} - a_{2n}^2$ is equal to					
	$(a) \frac{n}{2n-1} (a_1^2 - a_{2n}^2)$	(b) $\frac{2\pi}{n-1}(a_{2n}^2 - a_1^2)$	$(c) \frac{n}{n+1} (a_1^2 + a_{2n}^2)$	(d)None of these					
Q.18	How many terms of the A.P. -6 , $-\frac{11}{2}$, -5 are needed to give the sum -25?								
	(a) $n = 5$	(b) $n = 20$	(c) Both (a) and (b)	(d)None of these					
Q.19	In an A.P., if p th term is $\frac{1}{q}$ and q th term is $\frac{1}{p}$, the sum of first pq terms is								
	(a) $\frac{1}{2}(pq + 1)$	(b) $\frac{1}{3}(pq + 1)$	$(c)\frac{2}{3}(pq+1)$	$(d)\frac{2}{3}(pq+1)$					
Q.20	If $\frac{a^{n+b^n}}{a^{n-1}+b^{n-1}}$ is the A.M. b	etween a and b, then find	the value of n.						
	(a)n = 1	(b)n = 5	(c)n = 6	(d)n = 5					
Q.21	Between 1 and 31, (m) r	numbers have been insert	ed in such a manner that	the resulting sequence					
	forms an arithmetic pr	ogression (A.P.), and the	e ratio of the 7^{th} and (m	1-1) th numbers is 5:9.					
	Determine the value of ((a) $m = 14$	m). $(h) = 21$	(c) m = 10	(d) $m = 20$					
0.22	a $m = 14$	(0) III – 21 I natural numbers betwee	(0) m = 10 on 100 and 1000 that are r	(u) III = 25 nultiples of 5					
	(a) 98450	(b) 10454	(c) 95412	(d) 56523					
Q.23	If p th , q th and r th terms of	G.P. are x, y, z respectivel	y, the x ^{q-r} y ^{r-p} z ^{p-q} is equ	al to					
	(a) 0	(b)1	(c)-1	(d)None of these					
Q.24	Find the value of n so the	at $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the ge	ometric mean between a a	& b.					
	(a) $n = \frac{-4}{5}$	(b) n = $\frac{-1}{2}$	(c) $n = \frac{-1}{5}$	(d) $n = \frac{-2}{3}$					
0.25		a b $a\alpha + b$	· · · · · · · · · · · · · · · · · · ·						
Q.25	The determinant $\Delta = \begin{vmatrix} a \\ a \end{vmatrix}$	$\begin{vmatrix} b & c & b\alpha + c \end{vmatrix}$	s equal to zero, li						
	(a) a, b, c are in A.P.		(b) a, b, c are in G.P.						
	(c) a, b, c are in H.P. (d) a is a root of $ax^2 + bx + c = 0$								
Q.26	Consider an infinite geometric series with the first term a and common ratio r. If its sum is 4 and								
	the second term is $\frac{3}{4}$, the	en							
	(a) $a = \frac{4}{7}, r = \frac{3}{7}$	(b) a = 2, r = $\frac{3}{8}$	(c) $a = \frac{3}{2}, r = \frac{1}{2}$	(d) $a = 3, r = \frac{1}{4}$					
Q.27	If the fifth term of a geor	netric progression (G.P.)	is 2, then the product of its	s first 9 terms is					
0.20	(a) 256 Find a C D for which our	(b) 512	(C)1024	(d)None of these					
Q.28	Find a G.P. IOF which suff $-4 - 8 - 16$		-4 and the mun term is 4						
	(a) ${3}$, ${3}$, ${3}$, ${3}$,	(b) 4, -8,16, -32	(c) Both (a) & (b)	(d) None of these					
Q.29	Find the sum of the sequence $7 [10(10^n - 1)]$	ence 7, 77, 777, 7777 to $2 [10(10^{n} - 1)]$	on terms.	$2\Gamma_1(1^{n-1})$]					
	(a) $\frac{7}{9} \left[\frac{10(10^{-1})}{9} - n \right]$	(b) $\frac{2}{3} \left[\frac{10(10-1)}{9} - n \right]$	$(c) \frac{2}{3} \left[\frac{4(4-1)}{9} - n \right]$	$(d) \frac{2}{3} \left[\frac{\Gamma(1-1)}{9} - n \right]$					
Q.30	How many terms of G.P.	2, 4, 8, 16 are required	to give sum 254?						
0.21	(a) 4 $i^2 + i^4 + i^6 + \dots $ unto (2)	(0) 5	(C) 6	(d) /					
Q.31	(a) 0	(h) 1	(c) -1	(d) k					
0.32	$If 1 + \cos a + \cos^2 a + \cdots$	$\infty = 2 - \sqrt{2}$, then a (0 <	$(a < \pi)$ is	(*) *					
	$(a)^{\frac{\pi}{-}}$	$(b)^{\frac{\pi}{2}}$	$(c)^{\frac{\pi}{-}}$	$(d)^{\frac{3\pi}{2}}$					
0.33	If a h care in GP and b	10, a log, c log harain A	∇_4 P then the common diffe	2^{4} rence of the A P is					
4.00	(a) 3	$(h)^{\frac{3}{2}}$	$(c)^{\frac{1}{2}}$	$(d)^{\frac{2}{2}}$					
	(a) 5	$\left(U\right) \frac{1}{2}$	$\left(\cup \right)_{2}^{-}$	$\left(u \right) \frac{1}{3}$					

Q.34	If a and b are two different positive real numbers, then which of the following statements is true?							
	(a) $2\sqrt{ab} > a + b$	(b) $2\sqrt{ab} < a + b$	(c) $2\sqrt{ab} = a + b$	(d)None of these				
Q.35	If a is positive and if A	and G are the arithmetic	mean and the geometric	mean of the roots of				
	$x^2 - 2ax + a^2 = 0$ respectively, then							
	(a) A=G	(b) $A = 2G$	(c) 2A=G	(d) $A^2 = G$				
Q.36	If A.M. and G.M. of roots of	of a quadratic equation are	e 8 and 5, respectively, the	en obtain the quadratic				
	equation.							
	(a) $x^2 - 16x + 15 = 0$	(b) $x^2 - 16x + 25 = 0$	(c) $x^2 - 16x + 5 = 0$	(d) $x^2 - 6x + 5 = 0$				
Q.37	The sum of two numbers is 6 times their geometric mean, the ratio of numbers is							
	(a) $(3 + 2\sqrt{2}): (3 - 2\sqrt{2})$)	(b) $(2 + 5\sqrt{2}): (2 - 5\sqrt{2})$					
	(c) $(3 + 5\sqrt{2}): (3 - 5\sqrt{2})$)	(d) $(3 + 5\sqrt{2}): (3 - 5\sqrt{2})$					
Q.38	Which of the following is true if A means arithmetic mean and G means geometric mean of tw numbers?							
	(a) $A > G$	(b) $A \ge G$	(c) G < A	(d) $G \le A$				
Q.39	The ratio of the A.M. and	G.M. of two positive num	bers a and b is 5: 3. Find t	he ratio of a to b.				
	(a) 9:1	(b) 3:5	(c) 1:9	(d) 3:1				
Q.40	The harmonic mean bet	ween two numbers is 14	$4\frac{2}{5}$ and the geometric me	ean is 24. The greater				
	number between them is	S	-					
	(a) 72	(b) 54	(c) 36	(d) None of these				
Q.41	Suppose a, b, c are in AP a	and a², b², c² are in GP. If a	$< b < c and a + b + c = \frac{3}{2}$,	then the value of a is.				
	$(a)\frac{1}{2\sqrt{2}}$	(b) $\frac{1}{2\sqrt{2}}$	$(c)\frac{1}{2}-\frac{1}{\sqrt{2}}$	(d) $\frac{1}{2} - \frac{1}{\sqrt{2}}$				
0.42	Let the harmonic mean	and the geometric mean	of two numbers be in the	e ration $4:5$. The two				
•	numbers are in the ratio							
	(a) 1 : 1	(b) 2 : 1	(c) 3 : 1	(d) 4 : 1				
Q.43	If a, b, c, d, e, f are in A.P.,	then e — c is equal to						
	(a) d – c	(b) 2(d − c)	(c) 2(c – a)	(d) c – b				
Q.44	14 The m th term of an A.P. is n and n th term is m. Its p th term is							
	(a) m – n + p	(b) n + p - m	(c) m + n – p	(d) $m + n + p$				
Q.45	If 8 th term of an A.P. is 1	5 , then the sum of first 15	5 terms is					
	(a) 180	(b) 210	(c) 225	(d) 240				
Q.46	The first and last term of an A.P. are 1 and 7 at the sum of its term is 36 then the number of terms will be							
	(a) 6	(b) 7	(c) 8	(d) 9				
Q.47	If the sum of first n term	s of an A.P. is $2n^2 + 5n$, th	en its n th term is					
•	(a) 3n – 5	(b) 4n – 3	(c) 4n + 3	(d) 3n + 5				
Q.48	If $\frac{3+5+7+\dots \text{ to n terms}}{5+9+11+\dots \text{ to 10 terms}} = 7$, then n is equal to						
	(a) 35	(b) 36	(c) 37	(d) 38				
Q.49	If n A.M.'s are inserted b	etween 3 and 17 such tha	t the ratio of the last mea	an to the first mean is				
-	3:1 then the value of n is							
	(a) 4	(b) 6	(c) 8	(d) 9				
Q.50	The maximum sum of th	e series 100 + 98 + 96 +	··· is					
	(a) 2500	(b) 2550	(c) 2050	(d) 2555				

Q.1 List the initial four terms of the following sequences, given their nth terms:
(a) 2ⁿ (b) n² - 16 (c)
$$\frac{n+4}{n+1}$$

Q.2 A sequence of numbers (ao, a₁, a₂, a₃), satisfies the relation $a_n^2 - a_{n-1}a_{n+1} = (-1)^n$. Find a₃, given $a_n = 1$ and $a_1 = 3$
Q.3 Find the 21st, and 42nd terms of the sequence defined by: $t_n \left\{ 0, If n \text{ is odd} \right\}$
Q.4 The sequence (a_n) is defined by a (n) = (n-1)(n-2)(n-3). Show that the first three terms of the sequence are zero, but the rest of the terms are positive.
Q.5 Write the next terms of the sequence $\frac{1}{6}, \frac{1}{2}, \frac{1}{2}, \dots$.
Q.6 Find: $\sum_{n=1}^{5}(15 - 9n)$
Q.7 Find the indicated partial sum.
(a) 3,5,9,17,33 ...54 (b) a_n = 2 - 7n; S₅ (c) $a_n = (-1)^n 2^{2n-3}; S_5$
Q.8 Evaluate: $\sum_{n=1}^{5} (-1)^{n+1} 2^n$
Q.9 Express in expanded form. $\sum_{n=0}^{\infty} \frac{n-1}{n}$
Q.10 Express in expanded form. $\sum_{n=0}^{\infty} (-2)^{1+1}x^i$
Q.11 Express in expanded form. $\sum_{i=0}^{\infty} (-2)^{1+1}x^i$
Q.12 Represent the given series using sigma notation. $2 + 2^2x + 2^3x^2 + 2^4x^3 + 2^5x^4$
Q.13 Write the given series using sigma notation. $\frac{3}{4} + \frac{3}{4} + \frac{3}{16} + \cdots + 3(\frac{1}{2})^n$
Q.14 Find the sum of 10 A.M.'s inserted between a and b.
Q.15 For the sequence given by $a_n = 4n^2 - n + 1$, find first three terms.
Q.16 Find the sum of finding of the series $1 + 2 + 4 + 7 + \cdots$
Q.18 Find the sum of infinity of the series whose nth term is $\frac{1}{n(n+1)}$
Q.19 Find the 18th and 25th terms of the sequence defined by
 $a_n = \left\{ -\frac{4n}{n^{2+1}}, \text{ if n is odd natural number} \right\} \frac{1}{n(n+1)}$
Q.19 Find the sum of all positive integer, having three digits, are in A.P. and their sum is 15. The number obtained by reversing the digits is 594 less than the original number.
Q.20 The digits of a positive integer, having three digits, are in A.P. and their sum is 15. The number obtained by reversing the digits is 594 less than the original number.
Q.21 The dight of a positive integer, having three digit

is $\frac{3}{4}$ then value of r is equal to

ANSWER KEY – LEVEL – I

Q.	1	2	3	4	5	6	7	8	9	10
Ans.	d	а	а	а	С	а	С	b	d	d
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	d	а	b	b	а	d	а	С	а	а
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	а	а	b	b	b	d	b	С	а	d
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	С	d	b	b	а	b	а	b	а	а
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	d	d	b	С	С	d	С	а	b	b

ANSWER KEY – LEVEL – II									
1.	(a)	2,4,8,16	(b)	-15, -12, -7,0	(c)	$\frac{5}{2}, 2, \frac{7}{4}, \frac{8}{5}$			
2.	3					2 4 5			
3.	21^{st} term of the sequence is 0, and 42^{nd} term of the sequence 1.								
5.	$\frac{2}{3}$								
6.	-60								
7.	(a)	34	(b)	-95	(c)	-100			
8.	22								
9.	$0 + \frac{1}{2}$	$+\frac{2}{3}+\frac{3}{4}+\cdots$							
10.	$\mathbf{x} - \mathbf{x}^2$	$x^2 + x^3 - x^4 + \cdots$							
11.	-2+	$4x - 8x^2 + 16x^3 - \cdots$							
12.	$\sum_{k=1}^{5}$	$2^k x^{k-1}$							
13.	$\sum_{k=2}^{n}$	$_{2}^{3}3(\frac{1}{2})^{k}$							