

Q.1		e the roots of the equation x (b) -16	$^{2} + 6x + \lambda = 0$ and $3\alpha + 2$ (c) 16	3 = -20, find the value of λ. (d) 8
0.2	(a) -8 The quadratic equat			
Q.2		ion with rational coefficien		$\frac{1}{2+\sqrt{5}}$ will be
	(a) $x^2 + 4x - 1 = 0$		(b) $x^2 + 4x + 1 = 0$	0
	(c) $x^2 - 4x - 1 = 0$		(d) $\sqrt{2}x^2 - 4x + 1 =$	
Q.3		ts in the quadratic equation s		
04	(a) 1 If the roots of the gu	(b) 2 adratic equation $x^2 + px + p$	(c) 3 $a = 0$ are tap 20° and tap	(d) 4 15° respectively, then the
Q.4	value of $2 + q - p$ is.		q = 0 are tail 50° and tail	115 Tespectively, then the
	(a) 2	(b) 3	(c) 0	(d) 1
Q.5		roots of the equation (a +		• • •
L	of the roots is.		-) () (,,
	(a) 1	(b) – 1	(c) 2	(d) -2
Q.6		ots of the equation $ax^2 + bx$	x + c = 0, then the equati	on with roots $\alpha + \frac{1}{\alpha}$ and
•	_			β
	$\beta + \frac{1}{\alpha}$ is	())		
	(a) $acx^2 + (a + c)bx$		(b) $abx^2 + (a + c)bx$	
07	(c) $acx^2 + (a + b)cx$	· · ·	(d) $acx^2 - (a + c)bx$	· · ·
Q.7		non for both $k(6x^2 + 3) + 1$	$x + 2x^2 - 1 = 0$ and $6k(2)$	$x^2 + 1) + px + 4x^2 - 2 = 0,$
	then 2r – p is equal t (a) –1	(b) 0	(c) 1	(d) 2
Q.8		tions $x^2 + px + qr = 0$, $x^2 - qr = 0$		
4.0		the sum of the three commo		pq o onaroo a non zoro
	(nlain	(c) - (p - q + r)	(d) - p + a + r
Q.9	2	minimizes the sum of the s		
Q.9	a - 1 = 0 is.	minimizes the sum of the s		$\frac{1}{2} = \frac{1}{2} = \frac{1}$
	(a) 0	(b) 1	(c) 2	(d) 3
Q.10		e the roots of the equation	• •	
•	(a) $0 < \alpha < \beta$			(d) $\alpha < 0 < \alpha < \beta$
Q.11	The values of λ that	result in the equation $2x^2$	$-2(2\lambda + 1) x + \lambda (\lambda + 1)$) = 0 having one root less
	than λ and the other	root greater than $\boldsymbol{\lambda}$ are giv		
	(a) $\lambda > -1$	(b) $\lambda < 0$	(c) $(-\infty, -1) \cup (0, \infty)$	
Q.12		ensures the roots of the equ	$(1 - a^2)x^2 + 2ax - 1$	= 0 lie within the interval
	(0, 1) is.			
	(a) $a > \frac{1+\sqrt{5}}{2}$	(b) a > 2	(c) $\frac{1+\sqrt{5}}{2} < a < 2$	(d) a > $\sqrt{2}$
Q.13	If the sum of two roo	ots of the equation $x^3 - px^2$		
	(a) pq = r	(b) qr = p	(c) pr = q	(d) pqr = 1
Q.14		ent the roots of the equation	$n x^3 - 3x^2 + x + 5 = 0, th$	en y = $\sum \alpha^2 + \alpha \beta \gamma$ satisfies
	the equation.		(1) 2 2 -	0
	(a) $y^3 + y + 2 = 0$		$(h) u^3 - u^4 - u - 2$	- 0
	(c) $y^3 + 3y^2 - y - 3$		(b) $y^3 - y^2 - y - 2 =$ (d) $v^3 + 4v^2 + 5v +$	

Q.15	The quadratic equation with (a) $cx^2 + bx + a = 0$	h roots being the recipro	(b) $bx^2 + cx + a = 0$	ation $ax^2 + bx + c = 0$ is.			
	$(c) cx^2 + ax + b = 0$		(d) $bx^2 + ax + c = 0$				
Q.16	If α , β , and γ are the roots γ) ⁻¹ + (γ + α) ⁻¹ is.	-	-				
		(b) 3	(c) 4	(d) 5			
Q.17	If α and β are the roots of the	-	_				
	(a) $ax^2 + x(4a - b) + 4a - b$		(b) $ax^2 + x(4a - b) + 4a$				
0.40	(c) $ax^2 + x(b - 4a) + 4a $		(d) $ax^2 + x(b - 4a) + 4a$				
Q.18	If α and β are the roots of the	e quadratic equation x ² +	-				
	(a) $x^2 + \alpha x - \beta = 0$	$\alpha Q(\alpha + Q) = 0$	(b) $x^2 - [(\alpha + \beta) + \alpha\beta]x$				
0.10	(c) $x^2 + [(\alpha + \beta) + \alpha\beta]x +$ If α , β , and γ are the roots						
Q.19				(d) $x^3 - 64 = 0$			
Q.20	If the difference of the roo			(u) x = 04 = 0			
Q.20	(a) $p^2 + 4q = 1$	ts of the equation x =	(b) $p^2 - 4q = 1$				
	(c) $p^2 - 4q^2 = (1 + 2q)^2$		(d) $4p^2 + q^2 = (1 + 2p)$	2			
Q.21	If α and β are the roots of	the equation. $x^2 - px +$					
v	p is.	г., г.	- ,,	.,			
	-	(b) $\pm \sqrt{41}$	(c) ±8	(d) ±7			
Q.22	If $x^2 + px + q$ is an integer	· /					
·	(a) p is always an integer						
	(b) q is always an integer	but p need not be an int	reger				
	(c) $(p + q)$ is always an in	teger for p and q to be r	ion-integers				
	(d) p and q are always inte	-					
Q.23	If sec α , tan α are roots of $ax^2 + bx + c = 0$, then						
	(a) $a^4 - b^4 + 4ab^2c = 0$		(b) $a^4 + b^4 - 4ab^2c = 0$				
	(c) $a^2 - b^2 = 4ac$ (d) $a^2 + b^2 = ac$ If $0 and the roots \alpha, \beta of the equation px^2 + qx + r = 0 are imaginary, then$						
Q.24	If $0 and the re$		$px^2 + qx + r = 0$ are ima				
-	If $0 and the re(a) \alpha = \beta ($	(b) $ \alpha < 1$	$px^{2} + qx + r = 0$ are ima (c) $ \beta < 1$	iginary, then (d) α ≠ β			
Q.24 Q.25	If $0 and the re(a) \alpha = \beta (Consider the equation ax^2$	(b) $ \alpha < 1$ + bx + c = 0, where a	$px^2 + qx + r = 0$ are ima (c) $ \beta < 1 \neq 0$, a, b, c $\in \mathbb{R}$ then				
-	If $0 and the re(a) \alpha = \beta (Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the second se$	(b) $ \alpha < 1$ + bx + c = 0, where a hen other root is $\alpha - \sqrt{ }$	$px^{2} + qx + r = 0$ are ima (c) $ \beta < 1 \neq 0$, a, b, c \in R then $\overline{3}$				
-	If $0 and the re(a) \alpha = \beta (Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the formula of the equation (\alpha + \sqrt{\beta}) (b) If \alpha = 1 and b and c are$	(b) $ \alpha < 1$ + bx + c = 0, where a hen other root is $\alpha - \sqrt{\beta}$ e integers, then root wil	$px^{2} + qx + r = 0$ are ima (c) $ \beta < 1$ ≠ 0, a, b, c ∈ R then $\overline{3}$				
-	If $0 and the re(a) \alpha = \beta (Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, th(b) If a = 1 and b and c are(c) If one root is \alpha + i\beta, the$	(b) $ \alpha < 1$ + bx + c = 0, where a hen other root is $\alpha - \sqrt{ }$ e integers, then root wil en other root will be α -	$px^{2} + qx + r = 0$ are ima (c) $ \beta < 1$ ≠ 0, a, b, c ∈ R then $\overline{3}$				
Q.25	If $0 and the re(a) \alpha = \beta (Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c are(c) If one root is \alpha + i\beta, the(d) If roots are of opposite$	(b) $ \alpha < 1$ $\frac{1}{2} + bx + c = 0$, where a hen other root is $\alpha - \sqrt{1}$ e integers, then root will en other root will be α - e sign, then b $\neq 0$	$px^{2} + qx + r = 0$ are ima (c) $ \beta < 1$ ≠ 0, a, b, c ∈ R then $\overline{3}$				
-	If $0 and the re(a) \alpha = \beta ((Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, th(b) If a = 1 and b and c ard(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 2$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c) $+ bx + c = 0$, where $a = 1$ (c) $hen other root is \alpha - \sqrt{1}(c) a = 1(c) a =$	$px^{2} + qx + r = 0$ are ima (c) $ \beta < 1$ $\neq 0, a, b, c \in \mathbb{R}$ then $\overline{3}$ I be integer $-i\beta$	(d) α ≠ β			
Q.25 Q.26	If $0 and the re (a) \alpha = \beta (Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c are(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 2(a) 1$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0$ are ima (c) $ \beta < 1$ ≠ 0, a, b, c ∈ R then $\overline{3}$				
Q.25	If $0 and the re (a) \alpha = \beta (consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c are(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 2(a) 1 (c)The product of roots of x^2$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0$ are ima (c) $ \beta < 1$ $\neq 0, a, b, c \in \mathbb{R}$ then $\overline{3}$ I be integer $-i\beta$	(d) α ≠ β			
Q.25 Q.26	If $0 and the re (a) \alpha = \beta ((Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c are(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 2(a) 1 (The product of roots of x^2$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0$ are imation (c) $ \beta < 1$ $\neq 0$, a, b, c $\in \mathbb{R}$ then $\overline{3}$ If be integer $-i\beta$ (c) 3	(d) α ≠ β (d) 4			
Q.25 Q.26 Q.27	If $0 and the re (a) \alpha = \beta (c)Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c are(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 2(a) 1 (c)The product of roots of x^2(a) 1 (c)One of the root of the equation$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0$ are imation (c) $ \beta < 1$ $\neq 0, a, b, c \in \mathbb{R}$ then $\overline{3}$ If be integer $-i\beta$ (c) 3 (c) 11	 (d) α ≠ β (d) 4 (d) -10 			
Q.25 Q.26 Q.27 Q.28	If $0 and the response of the equation ax^2(a) \alpha = \beta (c)Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the set of the equation \alpha and c and c)(b) If a = 1 and b and c and c) (c) If one root is \alpha + i\beta, the set of the equation \alpha + i\beta, the set of the equation \alpha + i\beta and c) and c) of the equation x^2 - 2(a) 1 (c) The product of roots of x^2 - 2(a) 1 (c) The product of roots of x^2(a) 1 (c) One of the root of the equation \alpha + \frac{\sqrt{3}}{2}i (c) \alpha + \frac{\sqrt{3}}{2}i (c)$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0$ are imation (c) $ \beta < 1$ $\neq 0$, a, b, c $\in \mathbb{R}$ then $\overline{3}$ If be integer $-i\beta$ (c) 3	(d) α ≠ β (d) 4			
Q.25 Q.26 Q.27	If $0 and the re (a) \alpha = \beta (consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c are(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 22(a) 1 (c)The product of roots of x^2(a) 1 (c)One of the root of the equation(a) -\frac{1}{2} + \frac{\sqrt{3}}{2}i (c)If 3 is root of x^2 - kx + 3 = \frac{1}{2}i$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0 \text{ are ima}$ (c) $ \beta < 1$ $\neq 0, a, b, c \in \mathbb{R} \text{ then}$ $\overline{3}$ If be integer $-i\beta$ (c) 3 (c) 11 (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$	(d) $ \alpha \neq \beta $ (d) 4 (d) -10 (d) -1			
Q.25 Q.26 Q.27 Q.28 Q.29	If $0 and the re (a) \alpha = \beta ((Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c and(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 22(a) 1 ((The product of roots of x^2(a) 1 ((One of the root of the equation(a) -\frac{1}{2} + \frac{\sqrt{3}}{2}i (()If 3 is root of x^2 - kx + 3 =(a) 1 (()$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0 \text{ are ima}$ (c) $ \beta < 1$ ≠ 0, a, b, c ∈ R then 3 11 be integer - iβ (c) 3 (c) 11 (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (c) 3	(d) $ \alpha \neq \beta $ (d) 4 (d) -10 (d) -1 (d) 4			
Q.25 Q.26 Q.27 Q.28	If $0 and the re (a) \alpha = \beta (consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c are(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 22(a) 1 (c)The product of roots of x^2(a) 1 (c)One of the root of the equation(a) -\frac{1}{2} + \frac{\sqrt{3}}{2}i (c)If 3 is root of x^2 - kx + 3 = \frac{1}{2}i$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0 \text{ are ima}$ (c) $ \beta < 1$ ≠ 0, a, b, c ∈ R then 3 11 be integer - iβ (c) 3 (c) 11 (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (c) 3	(d) $ \alpha \neq \beta $ (d) 4 (d) -10 (d) -1 (d) 4			
Q.25 Q.26 Q.27 Q.28 Q.29	If $0 and the response of the equation ax^2(a) \alpha = \beta (c)Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c and(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 22(a) 1 (c)The product of roots of x^2(a) 1 (c)One of the root of the equation(a) -\frac{1}{2} + \frac{\sqrt{3}}{2}i (c)If 3 is root of x^2 - kx + 3 =(a) 1 (c)The least integral value of real roots.$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0 \text{ are ima}$ (c) $ \beta < 1$ ≠ 0, a, b, c ∈ R then 3 11 be integer - iβ (c) 3 (c) 11 (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (c) 3	(d) $ \alpha \neq \beta $ (d) 4 (d) -10 (d) -1 (d) 4			
Q.25 Q.26 Q.27 Q.28 Q.29	If $0 and the response of the equation ax^2(a) \alpha = \beta (c)Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the(b) If a = 1 and b and c and(c) If one root is \alpha + i\beta, the(d) If roots are of oppositeThe sum of roots of x^2 - 22(a) 1 (c)The product of roots of x^2(a) 1 (c)One of the root of the equation(a) -\frac{1}{2} + \frac{\sqrt{3}}{2}i (c)If 3 is root of x^2 - kx + 3 =(a) 1 (c)The least integral value ofreal roots.$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0 \text{ are ima}$ (c) $ \beta < 1$ ≠ 0, a, b, c ∈ R then 3 11 be integer - iβ (c) 3 (c) 11 (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (c) 3 n x ² - 2(k + 2)x + 12 + 1 (c) 3	(d) $ \alpha \neq \beta $ (d) 4 (d) -10 (d) -1 (d) 4 $k^2 = 0$ has two distinct			
Q.25 Q.26 Q.27 Q.28 Q.29 Q.30	If $0 and the response of the equation ax^2(a) \alpha = \beta (c)Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the second of the equation ax^2(b) If a = 1 and b and c and c and c(c) If one root is \alpha + i\beta, the second of the equation of x^2 - kx + 3 = (a) 1 (c) The least integral value of real roots.(a) 0 (c) Let \alpha and \beta are the roots of \alpha$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0 \text{ are ima}$ (c) $ \beta < 1$ ≠ 0, a, b, c ∈ R then 3 11 be integer - iβ (c) 3 (c) 11 (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (c) 3 n x ² - 2(k + 2)x + 12 + 1 (c) 3	(d) $ \alpha \neq \beta $ (d) 4 (d) -10 (d) -1 (d) 4 $k^2 = 0$ has two distinct (d) 4			
Q.25 Q.26 Q.27 Q.28 Q.29 Q.30	If $0 and the response of the equation ax^2(a) \alpha = \beta (c)Consider the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the second of the equation ax^2(b) If a = 1 and b and c and c and c(c) If one root is \alpha + i\beta, the second of the equation of x^2 - kx + 3 = (a) 1 (c) The least integral value of real roots.(a) 0 (c) Let \alpha and \beta are the roots of \alpha$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0 \text{ are ima}$ (c) β < 1 ≠ 0, a, b, c ∈ R then 3 11 be integer - iβ (c) 3 (c) 11 (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (c) 3 n x ² - 2(k + 2)x + 12 + 12 (c) 3 1 = 0 then (c) α ³ + β ³ = 2	(d) $ \alpha \neq \beta $ (d) 4 (d) -10 (d) -1 (d) 4 $k^2 = 0$ has two distinct (d) 4 (d) $\alpha^4 + \beta^4 = 1$			
Q.25 Q.26 Q.27 Q.28 Q.29 Q.30 Q.31	If $0 and the response of the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the equation ax^2(b) If a = 1 and b and c and c and c (c) If one root is \alpha + i\beta, the equation ax^2 (d) If roots are of opposite the sum of roots of x^2 - 22(a) 1 (c) The product of roots of x^2 (a) 1 (c) The product of roots of x^2(a) 1 (c) One of the root of the equation (a) -\frac{1}{2} + \frac{\sqrt{3}}{2}i (c) If 3 is root of x^2 - kx + 3 = (a) 1 (c) The least integral value of real roots.(a) 0 (c) Let \alpha and \beta are the roots of (a) \alpha^2 + \beta^2 = 4 (c) The roots x_1 and x_2 of the positive value of p is.$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0 \text{ are ima}$ (c) $ \beta < 1$ $\neq 0, a, b, c \in \mathbb{R} \text{ then}$ $\frac{3}{3}$ If be integer $-i\beta$ (c) 3 (c) 11 (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (c) 3 (c) 3 n x ² - 2(k + 2)x + 12 + 12 (c) 3 1 = 0 \text{ then} (c) $\alpha^{3} + \beta^{3} = 2$ $= 0 are such that their diageneric set in the integeneric set in the integeneri$	(d) $ \alpha \neq \beta $ (d) 4 (d) -10 (d) -1 (d) 4 (k ² = 0 has two distinct (d) 4 (d) $\alpha^4 + \beta^4 = 1$ fference is 1. Then the			
Q.25 Q.26 Q.27 Q.28 Q.29 Q.30 Q.31	If $0 and the response of the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the equation ax^2(a) If one root is \alpha + \sqrt{\beta}, the equation ax^2(b) If a = 1 and b and c and c and c (c) If one root is \alpha + i\beta, the equation ax^2 (d) If roots are of opposite the sum of roots of x^2 - 22(a) 1 (c) The product of roots of x^2 (a) 1 (c) The product of roots of x^2(a) 1 (c) One of the root of the equation (a) -\frac{1}{2} + \frac{\sqrt{3}}{2}i (c) If 3 is root of x^2 - kx + 3 = (a) 1 (c) The least integral value of real roots.(a) 0 (c) Let \alpha and \beta are the roots of (a) \alpha^2 + \beta^2 = 4 (c) The roots x_1 and x_2 of the positive value of p is.$	(b) $ \alpha < 1$ (b) $ \alpha < 1$ (c)	$px^{2} + qx + r = 0 \text{ are ima}$ (c) β < 1 ≠ 0, a, b, c ∈ R then 3 11 be integer - iβ (c) 3 (c) 11 (c) $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ (c) 3 n x ² - 2(k + 2)x + 12 + 12 (c) 3 1 = 0 then (c) α ³ + β ³ = 2	(d) $ \alpha \neq \beta $ (d) 4 (d) -10 (d) -1 (d) 4 $k^2 = 0$ has two distinct (d) 4 (d) $\alpha^4 + \beta^4 = 1$			

Q.33	If a and b are the non-zero roots of equation x^2 +	-ax + b = 0, then $(a + b)$	is equal to
·	(a) -1 (b) 2	(c) 1	(d) -2
Q.34	One of the root of quadratic equation with ration	al coefficient is $2 + \sqrt{3}$, th	en other root is.
	(a) $2 + \sqrt{3}$ (b) $2 - \sqrt{3}$	(c) $-2 + \sqrt{3}$	(d) 1
Q.35	If both roots of $x^2 + 4x + k = 0$ are real and equa	•	
0.04	(a) 2 (b) 4 (b) 4^{-1}	(c) 8	(d) 16
Q.36	If the equation $(k^2 - 3k + 2)x^2 + (k^2 - 5k + 4)x^2$	$x + (k^2 - 6k + 5) = 0$ is an	i identity then the value
	of k is. (a) 1 (b) 2	(c) 3	(d) 4
0.27	The equation $\frac{a(x-b)(x-c)}{(a-b)(a-c)} + \frac{b(x-c)(x-a)}{(b-c)(b-a)} + \frac{c(x-a)(x-b)}{(c-a)(c-b)}$		(u) 4
Q.37			
	(a) No value of x	(b) Exactly two values of (d) All values of y	of x
0.20	(c) Exactly three values of x The number of roots of the equation $\sqrt{1-2}(w^2)$	(d) All values of x $7x + 10$ = 0 is	
Q.38	The number of roots of the equation $\sqrt{x-3}(x^2 - (a) 2$ (b) 3	(x + 10) = 0 is (c) 0	(d) 1
Q.39	The roots of the equation $x^3 - 2x^2 - x + 2 = 0$ a		(u) 1
Q.0 J	-	(c) -1,0,1	(d) −1, −2,3
Q.40	If 1,2,3 are the roots of the equation $x^3 + ax^2 + b$	bx + c = 0, then	
	(a) $a = 1, b = 2, c = 3$	(b) a = −6, b = 11, c =	-6
	(c) $a = 6, b = 11, c = 6$	(d) $a = 6, b = 6, c = 6$	
Q.41	If the ratio of the roots of $Ix^2 - nx + n = 0$ isp: q,	_	
	(a) $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{1}} = 0$	(b) $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} - \sqrt{\frac{n}{l}} = 0$	
	(c) $\sqrt{\frac{q}{p}} + \sqrt{\frac{p}{q}} + \sqrt{\frac{1}{n}} = 1$	(d) $\sqrt{\frac{q}{p}} + \sqrt{\frac{p}{q}} + \sqrt{\frac{1}{n}} = 0$	
Q.42	If $a + b + c = 0$ and a, b, c are rational, then the r	oots of the equation	
	$(b + c - a)x^{2} + (c + a - b)x + (a + b - c) = 0$ as		
	(a) Rational (b) Irrational	(c) Imaginary	(d) Equal
Q.43	If the equation $x^2 + px + p = 0, p \in I$ has both th	e roots integer then (p ² – (b) One integral value	4p) can attain.
	(a) No integral value(c) Two integral values	(d) Three integral value	26
Q.44	If a, b are real and unequal, then the roots of the q	.,	
U	b) = 0 are.		
	(a) Real and equal	(b) Non-real complex	
	(c) Real and unequal	(d) None of these	
Q.45	Let α and β be the real roots of the equation $x^2 - \beta = \beta^2$	$x(\lambda - 2) + (\lambda^2 + 3\lambda + 5)$	= 0. The maximum
	value of $\alpha^2 + \beta^2$ is.	(-) 27	(1) 10
Q.46	(a) 18 (b) 20 If a, b, $c \in R$ and the equations $ax^2 + bx + c = 0$ a	(c) 27 and $x^2 + x + 1 = 0$ have a	(d) 19
Q. T O	r = 0 and the equations as $r = 0$ and $r = 0$ a c is equal to.	$\lim_{x \to \infty} x + 1 = 0$ have a	
	(a) 1: 1: 1 (b) 1: 2: 3	(c) 2: 3: 1	(d) 3: 2: 1
Q.47	$(\alpha_1, \alpha_2), (\alpha_2, \alpha_3)$ and (α_3, α_1) are respectively the		
	$x^2 - 2cx + 6 = 0$. If $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^+$, then the value		
	(a) 2 (b) 3	(c) 6	(d) 12
Q.48	If the minimum value of $x^2 + 2x + 3$ is m and ma	ximum value of $-x^2 + 4x$	x + 6 is M then the
	value of $m + M$ is	() 12	(1) 12
0.40	(a) 10 (b) 11 For all $x \in R$ if $mx^2 - 9mx + 5m + 1 > 0$, then m	(c) 12	(d) 13
Q.49			$(d) (^{-4} 0)$
0 50	(a) $\left(-\frac{61}{4}, 0\right)$ (b) $\left(\frac{4}{61}, \frac{61}{4}\right)$	(c) $[0, \frac{4}{61})$	(d) $\left(\frac{-4}{61}, 0\right)$
Q.50	For the equation $ x^2 + x - 6 = 0$, the roots are (a) Real and equal	(b) Real with sum 0	
	(c) Real with sum 1	(d) Real with product 0	
	(-)		

Q.51	If p + iq be one of the ro	oots of the equationx ³ + a	x + b = 0 then 2p is one	e of the roots of the
	equation.			
	(a) $x^3 + ax + b = 0$		(b) $x^3 - ax - b = 0$	
	(c) $x^3 + ax - b = 0$		(d) $x^3 + bx + a = 0$	
Q.52	If α , β are roots of $ax^2 +$	bx + c = 0, then the equa	ation $ax^2 - bx(x - 1) + c(x - 1)$	$(x-1)^2 = 0$
			(c) $\frac{\alpha}{1+\alpha}$, $\frac{\beta}{1+\beta}$	
Q.53	Let α and β be two roots	s of the equation $x^2 + 2x +$	$-2 = 0$, then $\alpha^{15} + \beta^{15}$ is e	equal to
	(a) -512	(b) 512	(c) 256	(d) -256
Q.54	If both the roots of the q	uadratic equation, x ² – m	1x + 4 = 0 are real and dis	stinct and they lie in the
	interval [1,5] then k lies	in the interval.		
	(a) (-5, -4)	(b) (3,4)	(c) (4,5)	(d) (5,6)
Q.55	-	_	which the roots of the quad	dratic equation
	$6x^2 - 11x + \alpha = 0 \text{ are r}$	ational number is.		
	(a)	(b)	(c)	(d)
Q.56			$+ (c - 4) = 0, c \neq 5 \text{ let } S$	
		-	n the interval (0, 2) and i	ts other root lies in the
	interval (2, 3). Then the	number of element in S is	5.	
	(a) 11	(b) 18	(c) 12	(d) 10
Q.57		-	roots of the quadratic eq	uation $x^2 + (3 - \lambda)x + (3 - \lambda)x$
	$2 = \lambda$ has the least value	e is.		
	(a) 2	(b) 1	$(c)\frac{15}{8}$	$(d)\frac{4}{9}$
Q.58	If one real root of the qu	adratic equation 81x ² + k	x + 256 = 0 is cube of the	other root, then a value
	of k is			
	(a) -300	(b) 144	(c) -81	(d) 100
Q.59	Let α and β the roots of	f the quadratic equation,	$x^2 \sin \theta - x(\sin \theta \cos \theta + 1)$	$1) + \cos \theta = 0(0 < \theta <$
		$\sum_{n=0}^{\infty} (\alpha^n + \frac{(-1)^n}{\beta^n})$ is equal		
			$(c)\frac{1}{1-\cos\theta}-\frac{1}{1+\sin\theta}$	
Q.60			ation in x, $3m^2x^2 + m(m + m)$	(-4)x + 2 = 0, then the
	least value of m for which	$ch \lambda + \frac{1}{\lambda} = 1$, is		
	(a) $4 - 2\sqrt{3}$	(b) $4 - 3\sqrt{2}$	(c) $2 - \sqrt{3}$	(d) $-2 + \sqrt{2}$
				· ·

- **Q.1** If α and β are the roots of the equation $x^2 7x + 1 = 0$, then determine the value of. $\frac{1}{(\alpha 7)^2} + \frac{1}{(\beta 7)^2}$
- **Q.2** Determine the sum of all real roots of the equation $(x 2)^2 + |x 2| 2 = 0$.
- **Q.3** If a and b (\neq 0) are the roots of the equation $x^2 + ax + b = 0$, determine the minimum value of $x^2 + ax + b$ for $x \in R$.
- **Q.4** If α is a real root of the equation $2x^3 3x^2 + 6x + 6 = 0$, determine [α], where [\cdot] represents the greatest integer function.
- **Q.5** Create the cubic equation with roots three times each of the roots of $x^3 + 2x^2 4x + 1 = 0$.
- **Q.6** (x-3)(x+2) = 0 then find the value of x.
- **Q.7** . If α , β are the roots of the equation $x^2 + 5x 7 = 0$ then find the value of $\frac{\alpha + \beta}{\alpha \beta}$.
- **Q.8** Write the number of real roots of the equation, $(x + 2)^2 + (x 3)^2 + (x 4)^2 = 0$.
- **Q.9** If $2 + \sqrt{3}$ is a root of the equation, $x^2 + px + q = 0$, then write the value of p and q.
- **Q.10** If a and b are roots of the equation, $x^2 x + 1 = 0$, then write the value of $a^2 + b^2$.
- **Q.11** Solve the quadratic equation, $25x^2 30x + 11 = 0$.
- **Q.12** For the equation, $|\mathbf{x}|^2 + |\mathbf{x}| 6 = 0$, find the sum of real roots.
- **Q.13** Find the values of k for which the quadratic equation, $x^2 kx + k + 2 = 0$ has equal roots.
- **Q.14** Solve the quadratic equation, $x^2 (3\sqrt{2} 2i)x 6\sqrt{2}i = 0, x \in C$.
- **Q.15** Solve the quadratic equation, $2x^2 (3 + 7i)x (3 9i) = 0, x \in C$.

ANSWER KEY – LEVEL – I										
									-	
Q.	1	2	3	4	5	6	7	8	9	10
Ans.	b	а	b	b	b	а	b	а	b	b
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	С	b	а	b	а	С	d	С	d	b
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	b	d	а	а	С	b	С	а	d	С
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	С	d	а	b	b	а	d	а	b	b
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	b	а	b	С	а	а	С	С	С	b
Q.	51	52	53	54	55	56	57	58	59	60
Ans.	С	С	d	С	d	а	а	а	b	b

ANSWER KEY – LEVEL – II

- 1. 47
- 2. 4
- $-\frac{9}{4}$ 3.
- 4.
- $-1 \\ x^3 + 6x^2 36x + 27 = 0$ 5.