	EXERCISE LEVEL -I	EL-I
Q.1	If I, J, and k be unit vector in the X, Y, and Z direction respectively suppose that $A = 3I - J + 2K$ Find the magnitude of the vector A.	

	(A) $\sqrt{8}$	(B) $\sqrt{12}$	$(C)\sqrt{14}$	(D) $\sqrt{4}$
Q.2	If $A = 2I + J$, $B = I - 4J + K$ and $C = J + K$ find the magnitude of the vector $2A - B + C$ and show the it is not a unit vector.			A – B +C and show that
	(A) √78	(B) $\sqrt{28}$	(C) √ <u>58</u>	(D) $\sqrt{36}$
Q.3	.3 two vector $a = xi + 14j$ and $b = 3i - 7yj$ are equal vector if:			
	(A) $x = 6, y = -1/2$ (C) $x = 3, y = -1/2$		(B) $x = 3, y = 2$ (D) $x = 3, y = -2$	
	(0) = 0, y = 1/2		(D) x = 0, y = -2	
Q.4	What is the sum of vector	or 3I + 3J – K and A zero v	ector?	
	(A) $3I + 3J - K$		(B) $0I + 0J - 0K$	
	(C) - 3I + 3J + K		(D) 3I + 3J + K	
Q.5	Two vectors are conside	ered to be collinear vector	s if their cross product is.	
•	(A) Equal to zero vector		(B) Not equal to zero ve	ctor
	(C) Equal to unit vector		(D) none of the above	
Q.6	The vector that have the	e same initial point are cal	led.	
	(A) Coplanar vector		(B) Co-initial vector	
	(C) Coterminous vector		(D) Collinear vector	
Q.7	0.7 Two vector are equal if they have the same magnitude and the same direction.		ion.	
	(A) True		(A) False	
Q.8	A zero vector id a uniqu	e vector.		
•	(A) True		(B) False	
0.9	State true or false any ty	vo given vectors can be co	nsidered as collinear vect	tors if these vectors are
·	parallel to the same give	en line.		
	(A) True		(B) False	
Q.10	Given two vector $\vec{P} = ($ using their components.	2,5) and $\vec{Q} = (3, -2)$, dete	ermine the magnitude of	the resultant vector \vec{R}
	(A) √8	(B) √ <u>34</u>	(C) $\sqrt{16}$	(D) √53
	\rightarrow	\rightarrow		

Q.11Given the two vector $\vec{A} = (5,10)$ and $\vec{B} = (4,-5)$ determine the angel of the resultant sum vector \vec{C} using their components.(A) 29.05°(B) 12.45°(C) 51.08°(D) 34.02°

Q.12	What is the formula for the magnitude of resultan	t vector of two vectors P and Q?
	(A) $ \mathbf{R} = \sqrt{(\mathbf{P}^2 + \mathbf{Q}^2 - 2\mathbf{P}\mathbf{Q}\sin\theta)}$	(B) $ \mathbf{R} = \sqrt{(\mathbf{P}^2 + \mathbf{Q}^2 + 2\mathbf{P}\mathbf{Q}\sin\theta)}$
	(C) $ \mathbf{R} = \sqrt{(\mathbf{P}^2 - \mathbf{Q}^2 + 2\mathbf{P}\mathbf{Q}\cos\theta)}$	(D) $ \mathbf{R} = \sqrt{(\mathbf{P}^2 + \mathbf{Q}^2 + 2\mathbf{P}\mathbf{Q}\cos\theta)}$
Q.13	The formula for the direction of the resultant vect $\beta = \tan - 1 \left[\frac{Q \sin \theta}{P + Q \cos \theta} \right]$	or of two vectors P and Q is
	(A) True	(B) False
Q.14	What is the scalar product of vectors a and b when (A) 1 (B) 0	n the angle between them is 90° (C) Not defined (D) –1
0.15	Find the scalar product of vectors $a = -i + i - k$ and	1 h = -2i + 2i - 2k
v	(A) 1 (B) 0	(C) -6 (D) 6
Q.16	A unit vector along a bisector of the angle between	n the two vectors
	(A) $\left(\frac{5i+2j+1}{\sqrt{390}}\right)$	$(B)(\frac{15i-2j-19k}{15\sqrt{590}})$
	(C) $(\hat{\frac{5i-22j-9k}{15\sqrt{590}}})$	(D) $\left(\frac{\hat{5i-22j+k}}{\sqrt{510}}\right)$
Q.17	If \vec{a} and \vec{b} are position vectors of A and B respectiv	vely, then the position vector of a point C in AB
	produced such that $\vec{AC} = 3\vec{AB}$ is	
	(A) $3\vec{a} - \vec{b}$	(B) $3\vec{b} - \vec{a}$
	(C) $3\vec{a} - 2\vec{b}$	(D) $\vec{3b} - 2\vec{a}$
Q.18	Let ABCDEF be a regular hexagon. If $\overrightarrow{AD} = \overrightarrow{xBC}$ and	$d \overrightarrow{CF} = y\overrightarrow{AB}$, then xy =
	(A) 4	(B) -4
	(C) 2	(D) -2
Q.19	$\vec{AB} = 3\hat{i} + \hat{j} - \hat{k}$ and $\vec{AC} = \hat{i} - \hat{j} + 3\hat{k}$. If the point I	P on the line segment BC is equidistant
	from AB and AC, then \vec{AP} is	
	(A) $2\dot{i} - \dot{k}$	$(B)\hat{i}-2\hat{k}$
	(C) $2i + k$	(D) $\dot{i} + 2\dot{k}$
Q.20	The vector $\vec{AB} = 3\hat{i} + 4\hat{k}$ and $\vec{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ a median through A is	re the sides of a triangle ABC. The length of
	(A) $3\sqrt{2}$	(B) $\frac{6}{\sqrt{3}}$
	(C) $\frac{33}{\sqrt{2}}$	(D) $\sqrt{33}$
Q.21	If A, B, C, D and E are five coplanar points, then the is equal to	value of $\vec{DA} + \vec{DB} + \vec{DC} + \vec{AE} + \vec{BE} + \vec{CE}$
	(A) DE	(B) 3(DE)
	(C) 2(DE)	$(D) 4(\vec{ED})$

22

Q.22	Let α , β , γ be distinct real numbers. The points with position vectors $\alpha i + \beta j + \gamma k$, $\beta i + \gamma j$ $\gamma i + \alpha j + \beta k$	
	(A) Are collinear(C) Form a scalene triangle	(B) Form an equilateral triangle(D) Form a right angled triangle
Q.23	The vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$ and $\hat{k} + \hat{i}$ are	
	(A) Linearly dependent	(B) Linearly independent
	(C) FOLIII a. Scalene ti langle	(D) FOTTILA FIGILI ANGIEU LI TANGIE
Q.24	If G and G' are the centroids of the triangl equals	e ABC and A'B'C', then the value of $AA' + \overrightarrow{BB'} + \overrightarrow{CC'}$
	(A) $\vec{GG'}$	(B) $2\vec{GG'}$
	(C) 3GG'	(D) 0
Q.25	If M and N are the mid-points of the diago	nals AC and BD respectively of a quadrilateral ABCD,
	then the value of $\vec{AB} + \vec{AD} + \vec{CB} + \vec{CD}$ equ	als
	(A) 2MN	(B) 2NM
	(C) $4NM$	(D) 4MN
Q.26	If S is the circumcentre, O is the orthocent	tre of \triangle ABC, then $\vec{SA} + \vec{SB} + \vec{SC}$ equals
	$(A) \vec{SO}$	(B) 2(SO)
	$(C) \overrightarrow{OS}$	(D) $2(\overrightarrow{OS})$
Q.27	If $ \vec{a} = 1$, $ \vec{b} = 2$, $ \vec{c} = 3$ and $\vec{a} + \vec{b} + \vec{c} = (A) 0$	= 0, then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ equals (B) -7
	(C) –5	$(D) - \frac{14}{3}$
Q.28	If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = 1$	$\dot{i} + \alpha \dot{j} + \beta \dot{k}$ are linearly dependent vectors and
	(A) $\alpha = 1, \beta = -1$	(B) $\alpha = 1, \beta = \pm 1$
	(C) $\alpha = -1, \beta = \pm 1$	(D) $\alpha = \pm 1, \beta = 1$
Q.29	Let \vec{a} , \vec{b} , \vec{c} are three non-zero vectors such collinear with \vec{c} and \vec{b} + \vec{c} is collinear with	n that any two of them are non-collinear. If $\vec{a} + \vec{b}$ is
	(A) 3a	(B) 3b
	(C) 3c	$(D) \vec{0}$
Q.30	If \vec{a} and \vec{b} are non-collinear vectors, then $\vec{\beta} = (3 + 2x)\vec{a} - 2\vec{b}$ are collinear, is given	the value of x for which vectors $\vec{\alpha} = (x - 2)\vec{a} + \vec{b}$ and by

- (A) $\frac{1}{2}$ (C) 0 (B) $\frac{1}{4}$ (D) -1

Q.31 If \hat{x} , \hat{y} , \hat{z} are mutually perpendicular unit vectors and $\hat{ax} + \hat{ay} + \hat{cz}$, $\hat{x} + \hat{z}$ and $\hat{cx} + \hat{cy} + \hat{bz}$ are coplanar, then (A) a. b. c are in A.P. (B) a, b, c are in G.P. (C) a, b, c are in H.P. (D) a, c, b are in G.P. **Q.32** If θ is the angle between unit vectors \vec{a} and \vec{b} , then $\sin\left(\frac{\theta}{2}\right)$ equals $(A)\frac{1}{2}|\vec{a}+\vec{b}|$ $(B)\frac{1}{2}|\vec{a}\times\vec{b}|$ $(C)\frac{1}{2}\sqrt{1-(\vec{a}\cdot\vec{b})}$ $(D)\frac{1}{2}|\vec{a}-\vec{b}|$ **Q.33** The unit vector perpendicular to the plane of vectors $\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} + \hat{j}$, is given by (A) $\pm (\frac{i+j}{\sqrt{2}})$ (B) $\pm \left(\frac{-i+j}{\sqrt{2}}\right)$ (D) i (C) $\pm (\frac{i+2j}{\sqrt{2}})$ **Q.34** ABCD is a parallelogram with $\overrightarrow{AC} = i - 2j + k$ and $\overrightarrow{BD} = -i + 2j - 5k$. The (A) $2\sqrt{5}$ (B) √5 (C) $\sqrt{3}$ (D) $2\sqrt{3}$ **Q.35** The vectors $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$ and $\vec{c} \times (\vec{a} \times \vec{b})$ are (A) Linearly dependent (B) Equal vectors (C) Parallel vectors (D) Linearly independent **Q.36** The unit vector which is orthogonal to the vector 3i + 2j + 6k and is coplanar with the vectors 2i + j + k and i - j + k is (B) $\frac{2i-3j}{\sqrt{13}}$ (D) $\frac{i+3k}{\sqrt{10}}$ (A) $\frac{3j-k}{\sqrt{10}}$ $(C)\frac{\hat{2i-6j+k}}{\sqrt{41}}$ **Q.37** If \vec{a} , \vec{b} , \vec{c} are three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2} (\vec{b} + \vec{c})$. If the vectors \vec{b} and \vec{c} are non-

parallel, then $(B)\frac{2\pi}{3}$ $(D)\frac{\pi}{3}$ (A) $\frac{\pi}{2}$

(C)
$$\frac{5\pi}{6}$$
 (D) $\frac{1}{2}$

Q.38 If \vec{a} and \vec{b} are two unit vectors, then the vector $(\vec{a} + \vec{b}) \times (\vec{a} \times \vec{b})$ is parallel to the vector (A) $\vec{a} - \vec{b}$ (B) $\vec{a} + \vec{b}$ (D) $2\vec{a} + \vec{b}$ (C) $2\vec{a} - \vec{b}$

Q.39 Given three unit vectors \vec{a} , \vec{b} , \vec{c} ; no two of which are collinear satisfying $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$ The angle between \vec{a} and b is

(A) $\frac{\pi}{3}$	(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$	(D) $\frac{\pi}{6}$

Q.40 If \vec{a} , \vec{b} , \vec{c} are three non-coplanar, non-zero vectors, then the value of $(\vec{a} \cdot \vec{a})\vec{b} \times \vec{c} + (\vec{a} \cdot \vec{b})\vec{c} \times \vec{a} + \vec{c}$ $(\vec{a} \cdot \vec{c})\vec{a} \times \vec{b}$ is equal to (A) $\begin{bmatrix} \vec{b} & \vec{c} & \vec{a} \end{bmatrix} \vec{a}$ (B) $[\vec{c} \vec{a} b]b$ (C) $[\vec{a} \vec{b} \vec{c}]\vec{c}$ (D) $\begin{bmatrix} \vec{a} & \vec{c} & \vec{b} \end{bmatrix} \vec{a}$ **Q.41** If \vec{a} , \vec{c} , \vec{d} are non-coplanar vectors, then $\vec{d} \cdot \{\vec{a} \times [\vec{b} \times (\vec{c} \times \vec{d})]\}$ is equal to (A) $(\vec{b} \cdot \vec{d})[\vec{a}\vec{c}d\vec{d}]$ (B) $(\vec{a} \cdot \vec{d}) [\vec{a} \quad \vec{c} \quad \vec{d}]$ (D) $(\vec{a} \cdot \vec{b}) [\vec{a} \quad \vec{c} \quad \vec{d}]$ (C) $(\vec{c} \cdot \vec{d})[\vec{a} \cdot \vec{c} \cdot \vec{d}]$ **Q.42** If $\begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \end{vmatrix} = 0$ and the vectors $A \equiv (1, a, a^2), B \equiv (1, b, b^2), C \equiv (1, c, c^2)$ are noncoplanar, then the value of abc equal to (A) -1 (B) 1 (C) 0 (D) a + b + c**Q.43** If the vectors \vec{a} , \vec{b} , \vec{c} are coplanar, then the value of $\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix} =$ (B) $\vec{0}$ (A) \vec{a} (D) $\vec{a} + \vec{b} + \vec{c}$ $(C) \rightarrow a$

Q.44 If $\vec{A} = 2\vec{i} + \vec{k}$, $\vec{B} = \vec{i} + \vec{j} + \vec{k}$ and $\vec{C} = 4\vec{i} - 3\vec{j} + 7\vec{k}$, then a vector \vec{r} which satisfies $\vec{r} \times \vec{B} = \vec{C} \times \vec{B}$ (A) $-\vec{i} - 8\vec{j} + 2\vec{k}$ (B) $\vec{i} - 8\vec{j} + 2\vec{k}$ (C) $\vec{i} + 8\vec{j} + 2\vec{k}$ (D) $-(\vec{i} + 8\vec{j} + 2\vec{k})$

Q.45 If $\vec{x} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{x} \perp \vec{a}$, then \vec{x} is equal to (A) $\frac{\vec{b} \times (\vec{a} \times \vec{c})}{\vec{b} \cdot \vec{c}}$ (B) $\frac{(\vec{b} \times \vec{c}) \times \vec{a}}{\vec{b} \cdot \vec{a}}$ (C) $\frac{\vec{a} \times (\vec{c} \times \vec{a})}{\vec{a} \cdot \vec{b}}$ (D) $\frac{\vec{a} \times (\vec{b} \times \vec{c})}{\vec{a} \cdot \vec{c}}$

Q.46 If \vec{a} is a unit vector, $\vec{a} \times \vec{r} = \vec{b}$, $\vec{a} \cdot \vec{r} = c$, $\vec{a} \cdot \vec{b} = 0$, then \vec{r} is equal to (A) $\vec{cb} + (\vec{a} \times \vec{b})$ (B) $\vec{ca} + (\vec{a} \times \vec{b})$ (C) $\vec{cb} - (\vec{a} \times \vec{b})$ (D) $\vec{ca} - (\vec{a} \times \vec{b})$

Q.47 If
$$\vec{x} + \vec{y} = \vec{a}$$
, $\vec{x} \times \vec{y} = b$ and $\vec{x} \cdot \vec{a} = 1$, then
(A) $\vec{x} = \frac{\vec{a} + \vec{a} \times \vec{b}}{a^2}$
(B) $\vec{y} = \frac{(a^2 + 1)\vec{a} - \vec{a} \times \vec{b}}{a^2}$
(C) $\vec{x} = \frac{\vec{b} + \vec{a} \times \vec{b}}{a^2}$
(D) $\vec{y} = \frac{(b^2 - 1)\vec{b} - \vec{a} \times \vec{b}}{a^2}$

Q.48 A unit vector in XY plane that makes an angle of 45° with the vector $\hat{i} + \hat{j}$ and an angle of 60° with the vector $3\hat{i} - 4\hat{j}$ is

(A)
$$\hat{i}$$
 (B) $\hat{\frac{i+j}{\sqrt{2}}}$
(C) $\hat{\frac{i-j}{\sqrt{2}}}$ (D) No such vector exists

Q.49 If $\vec{a} \cdot \vec{b} = \beta$ and $\vec{a} \times \vec{b} = \vec{c}$, then \vec{b} is equal to (A) $\frac{(\beta \vec{a} - \vec{a} \times \vec{c})}{a^2}$ (B) $\frac{\beta \vec{a} + (\vec{a} \times \vec{c})}{a^2}$ (C) $\frac{(\beta \vec{c} - \vec{a} \times \vec{c})}{a^2}$ (D) $\frac{\beta \vec{c} + (\vec{a} \times \vec{c})}{a^2}$

Q.50 Let $\vec{a} = \vec{i} + \vec{j}$ and $\vec{b} = 2\vec{i} - \vec{k}$, then point of intersection of the lines $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ is (A) $-\vec{i} + \vec{i} + \vec{k}$ (B) $3\vec{i} - \vec{i} + \vec{k}$

(A)
$$-i + j + k$$

(B) $3i - j + k$
(C) $3i + j - k$
(D) $i - j - k$

Q.51 Let the unit vectors \vec{a} and \vec{b} be perpendicular to each other and the unit vector \hat{c} be inclined at an angle θ to both \vec{a} and \vec{b} , if $\hat{c} = x\vec{a} + y\vec{b} + z(\vec{a} \times \vec{b})$, then (A) $x = \cos \theta$, $y = \sin \theta$, $z = \cos 2\theta$ (B) $x = \sin \theta$, $y = \cos \theta$, $z = -\cos 2\theta$

- (C) $x = y = \cos \theta$, $z^2 = \cos 2\theta$ (D) $x = y = \cos \theta$, $z^2 = -\cos 2\theta$
- **Q.52** If the non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the solution of the equation $\vec{r} \times \vec{a} = \vec{b}$, is given by

(A) $\vec{r} = x\vec{a} + \frac{1}{\vec{a} \cdot \vec{a}} (\vec{a} \times \vec{b})$	(B) $\vec{r} = x\vec{b} - \frac{1}{\vec{a} \cdot \vec{b}}(\vec{a} \times \vec{b})$
(C) $\vec{r} = x(\vec{a} \times \vec{b})$	(D) $\vec{r} = x\vec{b} + \frac{1}{\vec{a} \cdot \vec{a}} (\vec{a} \cdot \vec{b})$

Q.53 If the sum of two unit vector is a unit vector, then the magnitude of their difference is

(A) 1	(B) √2
(C) √5	(D) $\sqrt{3}$

Q.54 The unit vector in the direction of the vector $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, is (A) $\frac{1}{\sqrt{14}}\hat{i} + \frac{2}{\sqrt{14}}\hat{j} + \frac{3}{\sqrt{14}}\hat{k}$ (B) $\frac{2}{\sqrt{14}}\hat{i} + \frac{1}{\sqrt{14}}\hat{j} + \frac{3}{\sqrt{14}}\hat{k}$ (C) $\frac{5}{\sqrt{14}}\hat{i} + \frac{1}{\sqrt{14}}\hat{j} + \frac{3}{\sqrt{14}}\hat{k}$ (D) $\frac{6}{\sqrt{14}}\hat{i} + \frac{3}{\sqrt{14}}\hat{j} + \frac{1}{\sqrt{14}}\hat{j}$

Q.55 What is the magnitude of the scalar product of the following vectors? $\vec{a} = \hat{i} + \hat{j}; \vec{b} = \hat{i} + \hat{k}$

(A) 1 (B) 2 (C) $\sqrt{2}$ (D) 3

Q.56 If $\vec{a} = \vec{i} + \vec{j}$, $\vec{b} = \vec{j} + \vec{k}$, $\vec{c} = \vec{k} + \vec{i}$, a unit vector parallel to $\vec{a} + \vec{b} + \vec{c}$. (A) $2\vec{i} + 2\vec{j} + 2\vec{k}$ (B) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ (C) $\frac{\hat{(i+j+k)}}{2\sqrt{8}}$ (D) $\frac{\vec{a} + \vec{b} + \vec{c}}{\sqrt{3}}$

	A A	A A
Q.57	$p_1 i + p_2 j$ is a unit vector perpendicular to	4i - 3j if
	(A) $p_1 = 0.6, p_2 = 0.8$ (C) $p_2 = 0.8, p_3 = 0.6$	(B) $p_1 = 3, p_2 = 4$ (D) $p_1 = 4, p_2 = 3$
Q.58	The vector $\cos \alpha \cdot \cos \beta i + \cos \alpha \cdot \sin \beta j +$	$\hat{sin \alpha k}$ is a/an
	(A) Null vector	(B) Unit vector
	(C) Constant vector	(D) Vector of magnitude 3
Q.59	If OACB is a parallelogram with $\vec{OC} = \vec{a}$ and	nd $\overrightarrow{AB} = \overrightarrow{b}$, then \overrightarrow{OA} is equal to
	(A) $\vec{a} + \vec{b}$	(B) $\vec{a} - \vec{b}$
	$(C)\frac{1}{2}(\vec{b}-\vec{a})$	$(D)\frac{1}{2}(\vec{a}-\vec{b})$
0.60	If the vectors $3i + \lambda i + k$ and $2i - i + 8k$	are perpendicular, then λ is equal to
C	(A) -14	(B) 7
	(C) 14	(D) $\frac{1}{7}$
Q.61	A unit vector perpendicular to the plane p	passing through the points whose position vectors are
	$\hat{i} - \hat{j} + 2\hat{k}, 2\hat{i} - \hat{k}$ and $2\hat{i} + \hat{k}$ is	
	(A) $2\mathbf{i} + \mathbf{j} + \mathbf{k}$	(B) $\frac{1}{\sqrt{6}}(i+2j+k)$
	$(C) \pm (\hat{\frac{i-j}{\sqrt{2}}})$	(D) $\frac{1}{\sqrt{6}}(3\hat{i} + 4\hat{j} - \hat{k})$
0.00	$\mathbf{I} \left(\begin{array}{c} \rightarrow \\ \rightarrow \\ \end{array} \right)^{h} \left(\begin{array}{c} \rightarrow \\ \rightarrow \end{array} \right)^{h} \left(\begin{array}{c} \rightarrow \\ \rightarrow \end{array} \right)^{h} \left(\begin{array}{c} \rightarrow \\ \end{array} \right)^{h} \left(\begin{array}{c} \rightarrow \end{array} \right)^{h} \left(\begin{array}{c} \rightarrow \\ \end{array} \right)^{h} \left(\begin{array}{c} \rightarrow \end{array} \right)^{h} \left(\begin{array}{c} \end{array} \right)^{h} \left(\begin{array}{c} \rightarrow \end{array} \right)^{h} \left(\begin{array}{c} \rightarrow \end{array} \right)^$	h →
Q.62	If $a \cdot 1 = a \cdot (1 + j) = a \cdot (1 + j + k) = 1, t$	nen $a =$
	(A) zero vector	
	(C)]	(D) i + j + k
0.63	The vectors $2i - i + k$, $i - 3i - 5k$ and $3i$	-4i - 4k forms a/an
·	(A) Equilateral triangle	(B) Isosceles triangle
	(C) Right triangle	(D) Right isosceles triangle
Q.64	The magnitude of the sum of two vectors	is equal to the difference in their magnitudes. What is
	(A) 0°	(B) 45°
	(C) 90°	(D) 180°
Q.65	ABCDEF is a regular hexagon where centr	e O is the origin, if the position vector of A is $\hat{i} - \hat{j} + \hat{j}$
	$\hat{2k}$, then \overrightarrow{BC} is equal to	
	$(A)\hat{i} - \hat{j} + 2\hat{k}$	(B) - i + j - 2k
	$(C) \hat{3i} + 3j - 4k$	(D) Both (1) & (2)
Q.66	The area of parallelogram whose diagona The vectors are	Is coincide with the following pair of vectors is $5\sqrt{3}$.
		3i i i i i i i i i i
	(A) $3i + 2j - k, 3i - j + 4k$	$(B)\frac{1}{2} - \frac{1}{2} - k, 21 - 6j + 8k$

Q.67	If $ \vec{a} \times \vec{b} = 2$, $ \vec{a} \cdot \vec{b} = 2$, then $ \vec{a} ^2 \vec{b} ^2$ is (A) 6 (C) 8	equal to (B) 2 (D) 20
Q.68	The vectors $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = -2\hat{i} + 3\hat{k}$	$\hat{j} - 4\hat{k}$ and $\vec{c} = \hat{i} - 3\hat{j} + \lambda\hat{k}$ are coplanar if the value of λ
	(A) 1 (C) 3	(B) 2 (D) 5
Q.69	If \vec{a} , \vec{b} , \vec{c} be three vectors such that $\begin{bmatrix} \vec{a} & \vec{b} \\ \vec{b} \end{bmatrix}$ (A) 8 (C) 4	\vec{c}] = 4, then $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]$ is equal to (B) 64 (D) 16
Q.70	STATEMENT-1: Let \vec{a} , \vec{b} be two vectors su STATEMENT-2: Two non-zero vectors are (A) Statement-1 is True, Statement-2 is tr (B) Statement-1 is True, Statement-2 i Statement-1 (C) Statement-1 is True, Statement-2 is False, Statement-2 is t	that $\vec{a} \cdot \vec{b} = 0$, then a and b are perpendicular. and e perpendicular if and only if their dot product is zero. rue; Statement-2 is a correct explanation for Statement-1 s true; Statement-2 is NOT a correct explanation for alse rue
Q.71	Let \vec{u} and \vec{v} be unit vectors inclined at an STATEMENT-1: $\vec{u} \cdot \vec{w} = \cos \theta$. and STATEMENT-2: $ \vec{u} \times \vec{v} = \sin \theta$. (A) Statement-1 is True, Statement-2 is tr (B) Statement-1 is True, Statement-2 is Statement-1 (C) Statement-1 is True, Statement-2 is False, Statement-2 is tr	angle θ such that for some vector $\vec{w}, \vec{w} + \vec{w} \times \vec{u} = \vec{v}$. rue; Statement-2 is a correct explanation for Statement-1 s true; Statement-2 is NOT a correct explanation for alse rue
Q.72	STATEMENT-1: If $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$ and $\vec{a} \times \vec{a}$ And STATEMENT-2: If \vec{P} and \vec{Q} are perpendicu (A) Statement-1 is True, Statement-2 is tr (B) Statement-1 is True, Statement-2 is Statement-1 (C) Statement-1 is True, Statement-2 is F (D) Statement-1 is False, Statement-2 is t Let $\vec{u}, \vec{v}, \vec{w}$ be three unit vectors such that $\vec{a} \cdot \vec{u} = \frac{3}{2}, \vec{a} \cdot \vec{v} = \frac{7}{4}, \vec{a} = 2$ then	$\vec{c} = \vec{b} \times \vec{d}$, then $\vec{a} - \vec{d}$ is perpendicular to $\vec{b} - \vec{c}$. alar then $\vec{P} \cdot \vec{Q} = 0$. rue; Statement-2 is a correct explanation for Statement-1 s true; Statement-2 is NOT a correct explanation for alse rue $\vec{u} + \vec{v} + \vec{w} = \vec{a}, (\vec{u} \times \vec{v}) \times \vec{w} = \vec{b}, \vec{u} \times (\vec{v} \times \vec{w}) = \vec{c},$
Q.73	Vector \vec{u} is given by (A) $\vec{a} + \frac{8}{3}\vec{b} + \frac{4}{3}\vec{c}$ (C) $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$	(B) $\vec{a} + \vec{b} + \vec{c}$ (D) $\vec{a} + \frac{\vec{b}}{3} + \frac{\vec{c}}{2}$

Q.74	Vector \vec{v} is given by	
	(A) $\vec{a} + \vec{b} + \vec{c}$	$(B)\frac{\vec{a}+\vec{c}}{2}+\vec{b}$
	$(C)-4\vec{b}$	(D) $\vec{a} + \frac{\vec{b}}{3} + \frac{\vec{c}}{2}$
Q.75	Vector \vec{w} is given by	
	$(A)\frac{\vec{a}+\vec{b}}{3}$	$(B)\frac{\vec{b}-\vec{c}}{3}$
	(C) $\frac{4}{3}(\vec{a} + \vec{b})$	$(D)\frac{4}{3}(\vec{b}-\vec{c})$
Q.76	Vector $\vec{u} + \vec{w}$ is	
	(A) $\vec{a} + 3\vec{b}$	(B) $\vec{a} + 4\vec{b}$
	$(C)\vec{3a} + \vec{b}$	(D) $4\ddot{a} + \ddot{b}$
Q.77	Vector $\vec{u} + \vec{w} + \vec{v}$ is	
	$(A)\vec{a} + \vec{b}$	(B) $\vec{a} + 2\vec{b} + 3\vec{c}$
	(C)a	(D) $\vec{a} + \vec{b} + \vec{c}$
Q.78	Let O be the centre of a regular hexagon \vec{A} \vec{OA} , \vec{OB} , \vec{OC} , \vec{OD} , \vec{OE} and \vec{OF} is	ABCDEF. Then the magnitude of sum of the vectors
	(A) $\sqrt{3}$	(B) 0
	(C) 2	(D) 1
Q.79	For any two vectors \vec{a} and \vec{b} , which one o	f the following is not true?
	(A) $ \vec{a} + \vec{b} \le \vec{a} + \vec{b} $	(B) $ \vec{a} - b \le \vec{a} + b $
	(C) $ \vec{a} - b \le \vec{a} - b $	(D) $ \vec{a} - b \ge \vec{a} - b $
Q.80	What is the angle between \vec{a} and the resu	ltant of $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$?
	(A) 0	(B) $\tan^{-1}\frac{b}{b}$
	(C) $\tan^{-1} \frac{b}{a}$	(D) $\tan^{-1} \frac{(a-b)}{(a+b)}$
Q.81	L and M are the mid-points of the sides B to	C and CD a parallelogram ABCD. Then $\vec{AL} + \vec{AM}$ is equal
	$(A) \frac{1}{2} \overrightarrow{AC}$	$(B) \frac{2}{3} \overrightarrow{AC}$
	(C) $\frac{3}{2} \overrightarrow{AC}$	(D) $\frac{3}{4} \overrightarrow{AC}$
Q.82	Let ABCD be a parallelogram whose diago	onal intersect at P and let O be the origin.
	Then $\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD}$ equals	-
	(A) OP	(B) 20P
	(C) 30P	(D) 40P
Q.83	\vec{a} and \vec{b} are the position vectors of A, B re AC = 3AB. Then the position vector of C i	spectively and C is a point on AB produced such that s
	(A) $3\dot{b} - 2\ddot{a}$	(B) $2\vec{a} - 3\vec{b}$

(D) $\vec{3a} - 2\vec{b}$

(C) $2\vec{a} + 3\vec{b}$

Q.84	The points with position vectors $60i + 3j$	$\hat{\lambda}_{i}$,40 \hat{i} - 52 \hat{j} are collinear, if λ is equal to
	(A) -20 (C) -40	(B) 40 (D) 20
Q.85	Given two vectors $\vec{a} = 2\vec{i} - 3\vec{j} + 6\vec{k}$, $\vec{b} = -6\vec{k}$	$-2i + 2j - k$ and $\lambda = \frac{\text{the projection of } \vec{a} \text{ on } \vec{b}}{\text{the projection of } \vec{b} \text{ on } \vec{a}}$, then the value
	$(A)^{\frac{3}{2}}$	(B) 7
	(C) 3	$(D)^{\frac{7}{2}}$
Q.86	Let $\vec{a}, \vec{b}, \vec{c}$ be three nonzero vectors such that λ is	that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $\lambda \vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \vec{0}$, then
	(A) 1	(B) 2
	(C) -1	(D) -2
0.87	If $\vec{a} \times \vec{b} = \vec{c}$, $\vec{b} \times \vec{c} = \vec{a}$, where $\vec{c} \neq 0$, then	1
U	(A) $ \vec{a} = \vec{c} , \vec{b} = 1$	(B) $ \vec{a} \neq \vec{c} , \vec{b} = 1$
	(C) $ \vec{\mathbf{b}} \neq \vec{\mathbf{c}} , \vec{\mathbf{a}} = 1$	(D) $ \vec{a} \neq \vec{c} $
Q.88	$\hat{i} \cdot (\hat{j} \times \hat{k}) + \hat{j} \cdot (\hat{i} \times \hat{k}) + \hat{k} \cdot (\hat{i} \times \hat{j})$ is equa	ll to
	(A) 3	(B) 0
	(C)-3	(D) 1
0.89	If \vec{a} is any vector, then $(\vec{a} \times \vec{i})^2 + (\vec{a} \times \vec{i})^2$	$(\vec{a} \times \hat{k})^2$ is equal to
U	(A) $ \vec{a} ^2$	(B) $2 \vec{a} ^2$
	(C) $3 \vec{a} ^2$	(D) $4 \vec{a} ^2$
Q.90	The vectors $2i + 3j - 4k$ and $ai + bj + ck$	c are perpendicular, if (B) $a = 4$ b = 4 c = 5
	(C) $a = 4, b = 4, c = -5$	(b) $a = -4, b = 4, c = -5$
	^ ^ ^	۰. ۸
Q.91	The projection of the vector $\mathbf{i} + \mathbf{j} + \mathbf{k}$ alor	ng the vector of j is
	(A) 1 (C) 2	(B) 0 (D) -1
	(0) 2	
Q.92	If \vec{a} and \vec{b} are unit vectors inclined at an a	ingle θ , then the value of $ \vec{a} - \vec{b} $ is
	(A) $2\sin\frac{\theta}{2}$	(B) $2\sin\theta$
	(C) $2\cos\frac{\theta}{2}$	(D) 2cos θ
0.02	$\vec{r} \rightarrow \vec{r} \rightarrow \vec{r} \rightarrow \vec{r} \rightarrow \vec{r}$	
Q.93	If $ a = b $, then $(a + b) \cdot (a - b)$ is equa (A) Positive	(B) Negative
	(C) Zero	(D) None of these
	\rightarrow \rightarrow	\rightarrow \rightarrow
Q.94	If a and b are unit vectors, then which of	the following values of $a \cdot b$ is not possible?
	(A) √3	(B) $\frac{1}{2}$
	(C) $\frac{1}{\sqrt{2}}$	$(D)\frac{-1}{2}$

Q.95	If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $ \vec{a} = 3$, $ \vec{b} = 5$, $ \vec{c} = 7$,	then angle between \vec{a} and \vec{b} is
	(A) $\frac{\pi}{6}$	(B) $\frac{2\pi}{3}$
	$(C)\frac{5\pi}{3}$	(D) $\frac{\pi}{3}$
Q.96	A unit vector in the xy-plane that makes a	an angle of $\frac{\pi}{4}$ with the vector $\hat{i} + \hat{j}$ and an angle of
	$\frac{\pi}{3}$ with the vector $3\hat{i} - 4\hat{j}$ is	
	(A) i	$(B)\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
	$(C)\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$	(D) Not in existence
Q.97	The volume of the parallelepiped whose o	edges are $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$ and $\vec{c} = 2\hat{i} - \hat{k}$
	j + 2k is	
	(A) -2 cubic unit	(B) 2 cubic unit
	(C) I cubic unit	(D) 4 cubic unit
Q.98	If \vec{a} , \vec{b} , \vec{c} are unit vectors such that \vec{a} is pe	rpendicular to the plane $\stackrel{\rightarrow}{\mathrm{b}}$ and $\stackrel{\rightarrow}{\mathrm{c}}$ and angle between
	\vec{b} and \vec{c} is $\frac{\pi}{2}$, than value of $ \vec{a} + \vec{b} + \vec{c} $ is	
	(A) 4	(B) 2
	(C) 9	(D) 3
Q.99	Let \vec{a} , \vec{b} , \vec{c} be the position vectors of three of triangle is	verticesA, B, C of a triangle respectively. Then the area
	(A) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$	$(B)\frac{1}{2}(\vec{a}\times\vec{b})\cdot\vec{c}$
	(C) $\frac{1}{2} \vec{a} \times \vec{b} $	$(D)\frac{1}{2} \vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a} $
		A A

Q.100 The vectors 2i - mj + 3mk and (1 + m)i - 2mj + k include an acute angle for (A) All real m
(B) m < -2 or $m > -\frac{1}{2}$ (C) $m = -\frac{1}{2}$ (D) $m \in [-2, -\frac{1}{2}]$

31

- **Q.1** Classify the following measures as scalars and vectors.
 - 1) 10 kg 2) 2 meters north-west 3) 40°
 - 4) 40 watt 5) 10⁻¹⁹ coulomb
- **Q.2** How to define a vector?
- Q.3 What is the starting point of a vector?
- **Q.4** Is the position a vector?
- **Q.5** What is a negative vector?
- Q.6 What are the Uses of Vector Algebra?
- Q.7 What are the Properties of Vectors in Vector Algebra?
- Q.8 What is the condition for two vectors to be perpendicular?
- **Q.9** Find the magnitude of the vector $\vec{a} = 5i 3j + k$, using the formula from vector algebra.
- **Q.10** Let's say two vector are defined as $\vec{b} = \vec{e} \vec{c} + 2\vec{d}$ and $\vec{a} = 3\vec{e} \vec{d} + 2\vec{c}$. Find, $\vec{b} + \vec{a}$
- **Q.11** Find the projection of the vector 4i + 2j + k on the vector5i 3j+3k, using the projection vector formula.
- **Q.12** Find the projection of the vector 5i + 4j + k in the direction of the vector 3i + 5i 2k by using the projection vector formula
- **Q.13** Find the projection of the vector 2i j + 5k and 4i j + k.
- **Q.14** Find the projection of the vector 2i 6j + k and 8i 2j + 4k
- **Q.15** Find the vector projection of vector $\vec{a} = (2,3,1)$ in the direction of vector $\vec{b} = (5, -2,2)$
- **Q.16** If $\vec{a} = (1, -2, 2)$ and $\vec{b} = (5, -2, 2)$ find:
 - (a) The scalar projection of \vec{a} in the direction of \vec{b} .
 - (b) The vector projection of \vec{a} in the direction of b.
- **Q.17** Two vectors have their scalar magnitude as $|a = 2\sqrt{3}$ and |b| = 4, while the angle between the two vectors is 60°.

Calculate the cross product of two vectors.

- **Q.18** Find the cross product of two vectors $\vec{a} = (3,4,5)$ and $\vec{b} = (7,8,9)$
- **Q.19** If $\vec{a} = (2, -4, 4)$ and b = (4, 0, 3), find the angle between them.

- **Q.20** Find $\vec{a} \times \vec{b}$ if $\vec{a} = 2\hat{i} + \hat{k}$ and $\vec{b} = \hat{i} + \hat{k} + \hat{k}$.
- **Q.21** Let i + 3j + 5k and 5i + 6j 6k be the two vectors.
- **Q.22** If two vector a = xi + 2yj + 7zk and b = 2i j + 14k are equal vector then find the value of x, y, z...
- **Q.23** Check if the vector x = 5i 6j is equal to the vector y = -5i + 6j.
- **Q.24** Find the unit vector which is in the direction of 3i + 4j 5k.
- **Q.25** Find the vector of magnitude 8 unit and in the direction of the vector I 7J + 2K
- **Q.26** Find the unit vector parallel to the resultant of the vector. A = 2i - 3j + 4k And B = -i + 5j - 2k
- **Q.27** Two men apply equal force on a wooden box but in opposite direction. Will the box move in any direction?
- **Q.28** If $\vec{a} = (2, -1, 3)$ then what is (A) $\vec{a} \times \vec{0}$ and (B) $\vec{a} \cdot \vec{0}$
- **Q.29** Which of the given vector $\vec{a} = \{2,3\}, \vec{b} = \{4,6\}, \vec{c} = \{6,12\}$ are collinear to one another.
- **Q.30** Show that the vector $\vec{a} = (3,5,7)$, $\vec{b} = (6,10,14)$ are collinear vector.
- **Q.31** Find If the given vector oa = 2i + j and ob = 5i + j are coinitial vector.

Γ

Q.	1	2	3	4	5	6	7	8	9	10
Ans.	С	С	D	A	А	В	А	A	A	В
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	А	D	A	В	D	A	D	В	С	D
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	В	В	В	С	D	A	В	D	D	В
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	D	D	В	А	А	A	В	A	C	A
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	А	А	В	А	В	D	А	D	A	С
Q.	51	52	53	54	55	56	57	58	59	60
Ans.	D	А	D	А	А	В	А	В	D	С
Q.	61	62	63	64	65	66	67	68	69	70
Ans.	С	В	С	С	В	D	С	D	D	A
Q.	71	72	73	74	75	76	77	78	79	80
Ans.	В	D	A	С	D	В	С	В	С	A
Q.	81	82	83	84	85	86	87	88	89	90
Ans.	С	D	A	С	D	В	А	D	В	В
Q.	91	92	93	94	95	96	97	98	99	100
Ans.	А	А	С	А	D	D	В	В	D	В

ANSWER KEY – LEVEL – I