	E	KERCISE	LEVEL .	-1
				EL-I
Q.1	The region enclosed by	y the parabola $y = x^2$ and	the line $y = 2x$ (in square	units) is:
	(a) $\frac{2}{3}$	(b) $\frac{4}{3}$	(c) $\frac{8}{3}$	(d) 4
Q.2	The area enclosed by t	he curve y = cos x, from x	$x = 0$ to $x = \pi$, is:	
C -	(a) 2 sq units	(b) 4 sq units	(c) 3 sq units	(d) 1 sq units
Q.3	The area enclosed by t	he curve $y = \sqrt{16 - x^2}$ an	d the x-axis is:	
-	(a) 8π sq units	(b) 20 π sq units	(c) 16 sq π units	(d) 256 π sq units
Q.4	The area enclosed by t	he ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is e	equivalent to:	
	(a) π^2 ab	(b) π ab	(c) π a ² b	(d) πab^2
Q.5	Determine the area of	the region (in square uni	ts) enclosed by the curve	y ² =2y-x & y-axis and the
	y-axis.			
	(a) $\frac{8}{3}$	(b) $\frac{4}{3}$	(c) $\frac{5}{3}$	(d) $\frac{2}{3}$
Q.6	What is the area enclo	sed by the parabola $x^2 = y^2$	y and the line $y = 1$?	
	(a) $\frac{1}{3}$ sq units	(b) $\frac{2}{3}$ sq units	(c) $\frac{4}{3}$ sq units	(d) 2 sq units
Q.7	The area enclosed by t	he curve $y = x^2$ and the li	ne y = 16 is:	
	(a) $\frac{32}{3}$	(b) $\frac{265}{3}$	(c) $\frac{64}{3}$	(d) $\frac{128}{3}$
Q.8	Determine the area en	closed by the curve y = 4	x^3 within the interval $x =$	[-2, 3].
	(a) 97	(b) 70	(c) 65	(d) 77
Q.9	The area beneath the c	curve $y = x^2$ and the lines	x = -1, x = 2, and the x-ax	tis is:
	(a) 3 sq units	(b) 5 sq units	(c) 7 sq units	(d) 9 sq units

Q.10 The area beneath the curve $y = x^4$ and the lines x = 1, x = 5, and the x-axis is:

- (a) $\frac{3124}{3}$ sq units (b) $\frac{3124}{7}$ sq units (c) $\frac{3124}{5}$ sq units (d) $\frac{3124}{9}$ sq units
- **Q.11** The integral to determine the area of a circle with radius 'a' is given by:

(a)
$$\int_{a}^{b} (a^{2} + x^{2}) dx$$

(b) $\int_{0}^{2\pi} \sqrt{a^{2} - x^{2}} dx$
(c) $4 \times \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx$
(d) $\int_{0}^{a} \sqrt{a^{2} - x^{2}} dx$

Q.12 Determine the area enclosed by the curve $y = x^3$, the line x = 2, x = 5, and the x-axis.

(a) 173.50 (b) 230.25 (c) 175.35 (d) 152.25

Q.13 The region enclosed by the parabola $x = 4 - y^2$ and the y-axis, measured in square units, is:

(a)
$$\frac{2}{32}$$
 sq units (b) $\frac{32}{3}$ sq units (c) $\frac{33}{2}$ sq units (d) None of these

Q.14 The area bounded by the hyperbola $x^2 - y^2 = a^2$ between the straight-lines x = a and x = 2a is (A) $2\sqrt{3}a^2 - a^2\log(2 + \sqrt{3})$ (B) $2a^2 + a^2\log(2 + \sqrt{3})$ (C) $a^2\log(2 + \sqrt{3}) - 2a^2$ (D) $2a^2 + \sqrt{3}a^2\log(2 + \sqrt{3})$

Q.15 The area common to the region determined by $y \ge \sqrt{x}$ and $x^2 + y^2 < 2$, in first quadrant, in square units is (A) π (B) $(2\pi - 1)$ (C) $\frac{\pi}{4} - \frac{1}{6}$ (D) $(2\pi + 1)$

Q.16	The graph of $y^2 + 2xy + 40 x = 400$	e graph of $y^2 + 2xy + 40 x = 400$ divides the plane into the regions		
	The area of the bounded region is			
(A)400sq. units (B)800sq. unit		(B)800sq. units		
	(C)600sq. units	(D)900sq. units		

Q.17 The area enclosed by y = x(x - 1)(x - 2) and x-axis, in square units, is (A) $\frac{1}{4}$ (B) $\frac{3}{4}$ (C) $\frac{1}{2}$ (D) $\frac{1}{2}$

Q.18 The area bounded by the curves y = sinx and y = cosx between two consecutive points of the intersection, in square units, is

(A) $\sqrt{2}$	(B) $2\sqrt{2}$
(C) $4\sqrt{2}$	(D) $\frac{1}{\sqrt{2}}$

Q.19 The area bounded by $y = \sin^{-1} x$, $y = \cos^{-1} x$ and the x-axis, in square units, is (A) $\sqrt{2}$ (B) $\sqrt{2} + 1$ (C) $\sqrt{2} - 1$ (D) $2\sqrt{2}$

Q.20 The area bounded by the loop of the curve $4y^2 = x^2(4 - x^2)$ in square units, is (A) $\frac{7}{3}$ (B) $\frac{8}{3}$ (C) $\frac{11}{2}$ (D) $\frac{16}{3}$ **Q.21** Area bounded by the curves $y = \log_e x$ and $y = (\log_e x)^2$ in square units, is (A)e - 2 (B) 3 - e

(-)	
(C)e (D)	e — 1

Q.22 The area bounded by the curve $f(x) = x + \sin x$ and its inverse function between the ordinates x = 0 and $x = 2\pi$ in square units, is (A) 4π (B) 8π (C) 4
(D) 8

Q.23 The area bounded by the x-axis, the curve y = f(x) such that f(x) > 0 for xe (1, b) and the lines x = 1 x = b is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all b > 1 then f(x) is

(A) $\sqrt{x-1}$	(B) $\sqrt{x+1}$
(C) $\sqrt{x^2 + 1}$	(D) $\frac{x}{\sqrt{1+x^2}}$

Q.24 The area bounded by $y = -x^2 + 1$ and the x-axis is (A) $\frac{1}{3}$ (B) $\frac{2}{3}$ (C) $\frac{4}{2}$ (D) $\frac{8}{3}$

$\left(\mathbf{u} \right)_{3}$			(D

Q.25	The area bounded by $y = x^2$, $x + y = 2$ is	
	$(A)\frac{9}{2}$	$(B)\frac{15}{2}$
	(C) 9	(D) 15

Q.26 The area of the region bounded by $y = x^2$ and y = 4x, for x between 0 and 1, is equal to (A) 2 sq. units (B) $\frac{5}{3}$ sq. units (D) 1 sq. unit

Q.27 The area of the region in first quadrant bounded by the curves $y = x^3$ and $y = \sqrt{x}$, is equal to (A) $\frac{12}{5}$ sq. units (B) $\frac{5}{12}$ sq. units (C) $\frac{5}{3}$ sq. units (D) $\frac{3}{5}$ sq. units

Q.28 The area of the region bounded by the curve $y = x^2 - 2$ and line y = 2, is equal to (A) $\frac{32}{2}$ sq. unit (B) $\frac{19}{2}$ sq. unit

3	2
(C) $\frac{21}{5}$ sq. unit	(D) $\frac{16}{3}$ sq. unit

Q.29 The area between the curve $y^2 = 4x$, y-axis, and y = -1 and y = 3 is equal to (A) $\frac{7}{3}$ sq. units (B) $\frac{9}{4}$ sq. units (C) $\frac{1}{12}$ sq. units (D) $\frac{1}{4}$ sq. units

Q.30 The common area of the curves $y = \sqrt{x}$ and $x = \sqrt{y}$ is equal to (A) 3sq. units (B) 3sq. units (C) $\frac{1}{3}$ sq. units (D) $\frac{2}{3}$ sq. units

Q.31 The area of the region bounded by y = |x - 1| and y = 1 is equal to (A) 1 sq. unit (B) 2 sq. units (C) $\frac{1}{2}$ sq. unit (D) 3 sq. units

Q.32	The area of the region bounded by the cu (A) $\frac{5}{3}$ sq. units	rve $y = x^2$ and $y = x $ is equal to (B) $\frac{1}{3}$ sq. unit	
	(C) $\frac{5}{6}$ sq. units	(D) $\frac{1}{6}$ sq. unit	
Q.33	The area bounded between curves $y^2 = x^2$	x and $y = x $ is	
	$(A)\frac{1}{3}$	$(B)\frac{2}{3}$	
	(C) 1	(D) $\frac{1}{6}$	
Q.34	The area between the curves $y = x^3$ and y	y = x + x is equal to	
	(A) 0sq. unit	(B) 2sq, units	
	(C) 1sq. unit	(D) 3 sq. units	
Q.35	The area bounded by the curve $y = x - $	1 and $y = - x + 1$ is	
	(A) 1sq. unit	(B) 2 sq. units	
	(C) $2\sqrt{2}$ sq. units	(D) 4 sq. units	
0.36	For which of the following positive value	of m, the area of the region bounded by the curve $y =$	
·	$x - x^2$ and the line $y = mx$ equals $\frac{9}{2}$?	, , , , , , , , , , , , , , , , , , , ,	
	(A) 3	(B) 1	
	(C) 2	(D) 4	
Q.37	The area bounded by the curve $y = (x - x)$	$(1)^{2}, y = (x + 1)^{2}$ and the x-axis is	
-	$(A)\frac{1}{3}$	$(B)\frac{2}{3}$	
	$(C)\frac{4}{2}$	$(D)\frac{3}{2}$	
	× · 3	× · 3	
Q.38	Minimum area of triangle formed by any	tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with the co-ordinate	
	axes is		
	$(A)\frac{a^2+b^2}{2}$	$(B)\frac{(a+b)^2}{2}$	
	(C) ab	$(D)\frac{(a-b)^2}{2}$	
0.39	The area enclosed by the curves $y^2 = x^3 z^3$	and $ \mathbf{v} = 2\mathbf{x}$ in square units, is	
1	$(A)\frac{2}{3}$	(B) 1	
	(C) 4	$(D)\frac{32}{5}$	
Q.40	The area bounded by curve $f(x) = x^3$ and	$g(x) = \sqrt[3]{x}$ is (in square units)	
	(A) 1	(B) 2	
	(C) 3	(D) 4	
Q.41	STATEMENT-1: $y = f(x)$, be such that $f(x) \ge 0$, for $x \in (a, b)$ then area bounded by $y = f(x)$, $x = a$ and $x = b$ And		
	STATEMENT-2 : The area of curve $y = f(x)$	x) between ordinates $x = a$ and $x = b$ is $\int_{a}^{b} f(x) dx$.	
	 (A) Statement-1 is True, Statement-2 is true; Statement-2 is a correct explanation for Statement-1 (B) Statement-1 is True, Statement-2 is true; Statement-2 is NOT a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is true 		

0.42 STATEMENT-1 : The area bounded by $y = |\sin x|$ and x axis in x = 0, $x = 2\pi$ is 4 sq. units. and

STATEMENT-2:
$$\int_0^{2\pi} \sin x dx = 0.$$

(A) Statement-1 is True, Statement-2 is true; Statement-2 is a correct explanation for Statement-1

(B) Statement-1 is True, Statement-2 is true; Statement-2 is NOT a correct explanation for Statement-1

- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is true

Q.43 STATEMENT-1: The area bounded by $y = \sin x$, $y = \cos x$, x = 0 and $x = \frac{\pi}{2}$ is $2(\sqrt{2} - 1)$ sq. units.

And

STATEMENT-2 :
$$\int_{0}^{\pi/4} (\cos x - \sin x) dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx = 2(\sqrt{2} - 1).$$

- (A) Statement-1 is True, Statement-2 is true; Statement-2 is a correct explanation for Statement-1
- (B) Statement-1 is True, Statement-2 is true; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is true

Let y = f(x) and y = g(x) be two curves such that $f(x) \ge g(x)$, $\forall x \in [a, b]$ then area bounded by y = f(x) and y = g(x) between x = a and x = b lines is $\int_a^b (f(x) - g(x)) dx$ sq. units.

Q.44 Area bounded by $y = \sin x$ and y = 0, between x = 0 and $x = \pi$ in square units is equal to (A) 1 (B) 2 (C) π (D) 2π

Q.45 The area bounded by curves $y = x^2$ and $y = x^3$ in square units is $(B)\frac{1}{6}$ $(A)\frac{1}{12}$ $(C)\frac{1}{2}$ $(D)\frac{1}{4}$

Q.46	The area bounded by curves $y = x^3$ and y	v = x is
	$(A)\frac{1}{2}$ sq. units	(B) $\frac{1}{4}$ sq. units
	(C) $\frac{1}{8}$ sq. units	(D) $\frac{1}{16}$ sq. units

Q.47 The area bounded by curves $y = x^2$ and $x = y^2$ in square units is $(A)\frac{1}{8}$ (B) $\frac{1}{4}$ $(C)\frac{1}{2}$ $(D)\frac{1}{\epsilon}$

Q.48 The area bounded by curves $y = x^2$ and $y = x^6$ in square unit is equal to $(A)\frac{7}{53}$ (B) $\frac{9}{41}$ (D) $\frac{8}{21}$ $(C)\frac{2}{24}$

Q.49 The area bounded by the curve $y = \sin x, x \in [0,2\pi]$ and the x-axis, is equal to (A) 4 sq. units (B) 0 sq. unit (C) 2 sq. units (D) 6 sq. units

Q.50 The area of the region bounded by the x-axis, the function $y = -x^2 + 4x - 8$ and the lines x = -1 and x = 4, is equal to (A) $31\frac{2}{2}$ sq. units (B) 31 sq. units (C) $32\frac{2}{3}$ sq. units (D) 32 sq. units **Q.51** The area of the region bounded by the curvey $= x^2$ and y = x is equal to (B) $\frac{7}{2}$ sq. units (A) $\frac{9}{2}$ sq. units (C) $\left(e - \frac{1}{2}\right)^2$ sq. units (D) $\frac{1}{6}$ sq. units **Q.52** The area of the region bounded by the function $f(x) = x^3$, the x-axis and the lines x = -1 and x = -11 is equal to (B) $\frac{1}{2}$ sq. unit (D) $\frac{1}{8}$ sq. unit (A) $\frac{1}{4}$ sq. unit (C) 1sq. unit **Q.53** The value of $\int_{-1}^{10} f(x)dx$, where $f(x) = \min\{x - [x], -x - [-x]\}$, where [] is G.I.F., is (B) 40 (A) 20 (C) 5 (D) 30 **Q.54** The ratio in which the area bounded by the curves $y^2 = 12x$ and $x^2 = 12y$ is divided by the line x = 3, is equal to (A) 15:16 (B) 15:49 (C) 1:2 (D) 15:29 **Q.55** The smaller area bounded by $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and the line 3x + 4y = 12 is (A) 3π sq. units (B) $(3\pi - 6)$ sq. units (C) $(3\pi - 2)$ sq. units (D) $(3\pi - 4)$ sq. units **Q.56** The area bounded by curve $|x| + |y| \ge 1$ and $x^2 + y^2 \le 1$ for $x \ge 0$ is (B) $\frac{\pi}{2}$ sq. units (A) 2 sq. units (C) $\frac{(\pi-2)}{2}$ sq. units (D) $(\pi - 2)$ sq. units **Q.57** Area bounded by the curves $y = x^2 - 1$, x + y = 3 is (A) $\frac{9}{2}$ sq. units (B) 4 sq. units (C) $\frac{7\sqrt{17}}{2}$ sq. units (D) $\frac{17\sqrt{17}}{\epsilon}$ sq. units **Q.58** The area of the figure bounded by the parabolay $= -x^2 - 4x + 5$, and the line tangent to it at the point M(2, -7) and the y-axis is (B) $\frac{15}{7}$ sq. units (A) $\frac{8}{2}$ sq. units (D) $\frac{13}{2}$ sq. units (C) $\frac{10}{2}$ sq. units **Q.59** The area of the region enclosed by the curvesy = $x \log x$ and $y = 2x - 2x^2$ is (B) $\frac{1}{2}$ sq. units (A) $\frac{7}{12}$ sq. units

(C) $\frac{5}{12}$ sq. units	(D) $\frac{1}{4}$ sq. units
$(-)_{12} - 1$	

Q.60 If area bounded by the curve $x = ay^2$ and $y = ax^2$ is 1 sq. unit, then the positive value of a is equal to

(A) $\frac{1}{\sqrt{3}}$	(B) $\frac{1}{3}$
$(C)\frac{1}{2}$	(D) 3

Q.61 The slope of the tangent to the curve y = f(x) at a point (x, y) is 2x + 1 and the curve passes through the point (1,2). The area of the region bounded by the curve, the x-axis and the line x = 1 is equal to

$(A)\frac{5}{3}$ sq. units	(B) $\frac{5}{6}$ sq. units
(C) $\frac{6}{5}$ sq. units	(D) 6 sq. units

Q.62 Area bounded by the curves $y = 2^x$, $y = 2x - x^2$, x = 0 and x = 2 is equal to (B) $\frac{3}{\log 2} + \frac{4}{3}$ sq. units (D) $3\log 2 - \frac{4}{3}$ sq. units (A) $\frac{3}{\log 2} - \frac{4}{3}$ sq. units (C) $3\log 2 + \frac{4}{3}$ sq. units

Q.63 The parabola $y^2 = 4x$ and $x^2 = 4y$ divide the square region bounded by the lines x = 4 Y = 4 and the coordinate axes. If $S_{1} S_{2} S_{3}$ are respectively the areas of these parts numbered from top to bottom, then $S_1: S_2: S_3$ is

(A) 1:1:1	(B) 2 : 1 : 2
(C) 1 : 2 : 3	(D) 1:2:1

Q.64 The area of region bounded by the curves $y = a^{x}(a > 1)$ and $y = b^{-x}(b > 1)$ 1) and the straight line x = 1 is 1 (1)

(A)
$$\frac{1}{\log a}(a-1) + \frac{1}{\log b}(\frac{1}{b}-1)$$
 sq. units
(B) $\log a(a-1) + \log b(\frac{1}{b}-1)$ sq. units
(C) $\frac{1}{\log a}(a-1) + \frac{1}{\log b}(b-1)$ sq. units
(D) $\log a(a-1) + \log b \cdot (b-1)$ sq. units

Q.65 The area bounded by curve $f(x) = ||\tan x + \cot x|| \tan x - \cot x|$ between lines x = 0, $x = \frac{\pi}{2}$ and x-axis, is (B) $\log \sqrt{2}$ sq. units (A) log 4 sq. units

(C) 2 log4 sq. units (D) $\sqrt{2}\log 2$ sq. units

Q.66 Area bounded by curves $y = [\cos A + \cos B + \cos C], y = \left| 5 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \sin \frac{C}{2} \right|;$ where $[\cdot]$ represents greatest integer function and A, B, C are angles of a triangle, and the curve y - |x - 4| = 0 is (in square units) (A) 5 (B) 3 (D) 1 (C) 2

Q.67 The area (in sq. units) bounded by the parabolay $= x^2 - 1$, the tangent at the point (2,3) to it and the y-axis is

$(A)\frac{32}{3}$	(B) $\frac{8}{3}$
(C) $\frac{56}{3}$	(D) $\frac{14}{3}$

Q.68 The area of the region $A = \{(x, y): 0 \le y \le x | x | + 1 \text{ and } -1 \le x \le 1\}$ in sq. units, is $(B)\frac{4}{3}$ (A) 2 $(C)\frac{2}{2}$

 $(D)\frac{1}{2}$

0.00		
Q.69	(A) $\sqrt{3}$	$y = kx^2$ and $x = ky^2$, $(k > 0)$, is 1 square unit. Then k is (B) $\frac{1}{\sqrt{2}}$
	. ,	V 3
	(C) $\frac{\sqrt{3}}{2}$	(D) $\frac{2}{\sqrt{3}}$
0.70	The area (in an unite) of the region hour	ded by the sum $x^2 - 4x$ and the straight line
Q.70	x = 4y - 2 is	ded by the curve $x^2 = 4y$ and the straight line
	$(A)\frac{7}{8}$	(B) $\frac{5}{4}$
	$(C) \frac{9}{8}$	$(D)\frac{3}{4}$
	(-) ₈	
Q.71	The area (in sq. units) in the first quadra	
	the tangent to it at the point $(2,5)$ and th	0
	(A) $\frac{187}{24}$	(B) $\frac{8}{3}$
	$(C)\frac{14}{3}$	(D) $\frac{37}{24}$
Q.72	The area (in an unita) of the region hour	ded by the parabola, $y = x^2 + 2$ and the lines, $y = x + 2$
Q.72	1,x = 0 and $x = 3$, is	x = x + 2 and the fines, $y = x + 2$
	$(A)\frac{15}{2}$	(B) $\frac{21}{2}$
	$(C)\frac{\frac{15}{4}}{4}$	$(D)\frac{17}{4}$
	× 4	× · 4
Q.73		$(x, y) \in R \times R \mid 0 \le x \le 3, 0 \le y \le 4, y \le x^2 + 3x$ is:
	(A) $\frac{26}{3}$	(B) $\frac{59}{6}$
	(C) 8	(D) $\frac{53}{6}$
0.74	Let $S(\alpha) = \{(\alpha, \alpha), \alpha^2 < \alpha, 0 < \alpha < \alpha\}$ and	$\Lambda(\alpha)$ is an a of the maxim $\Gamma(\alpha)$ if for all $0 < 1 < 1$
Q.74	Let $S(\alpha) = \{(x, y): y^2 \le x, 0 \le x \le \alpha\}$ and $4,A(\lambda): A(4) = 2:5$, then λ equals	A(α) is area of the region S(α). If for a λ , 0 < λ <
	(A) $2\left(\frac{2}{r}\right)^{\frac{1}{3}}$	(B) $2\left(\frac{4}{25}\right)^{\frac{1}{3}}$
	(C) $4\left(\frac{2}{5}\right)^{\frac{1}{3}}$	(D) $4\left(\frac{4}{25}\right)^{\frac{1}{3}}$
Q.75	The area (in sq. units) of the region $A = \{$	
	$(A)\frac{31}{6}$	(B) $\frac{10}{3}$
	$(C)\frac{9}{2}$	(D) $\frac{13}{6}$
0.54		$() Y^2$
Q.76	The area (in sq. units) of the region $A = \{$	
	(A) 18 (C) $\frac{53}{3}$	(B) 16 (D) 30
	$(C)\frac{1}{3}$	(0) 30
Q.77	The region represented by $ x - y \le 2$ ar	$ d x + y \le 2$ is bounded by a
	(A) Square of side length $2\sqrt{2}$ units	
	(B) Square of area 16sq. units	
	(C) Rhombus of side length 2 units	
	(D) Rhombus of area $8\sqrt{2}$ sq. units	

Q.78 The area (in sq. units) of the region bounded by the curves $y = 2^x$ and y = |x + 1|, in the first quadrant is :

y i i j	
$(A)\frac{3}{2} - \frac{1}{\log_e 2}$	$(B)\frac{1}{2}$
(C) $\log_e 2 + \frac{3}{2}$	(D) $\frac{3}{2}$

Q.79 If the area (in sq. units) of the region $\{(x, y): y^2 \le 4x, x + y \le 1, x \ge 0, y \ge 0\}$ is $a\sqrt{2} + b$, then a - b is equal to

$(A) - \frac{2}{3}$	(B) 6
(C) $\frac{10}{3}$	(D) $\frac{8}{3}$

Q.80 If the area (in sq. units) bounded by the parabolay² = $4\lambda x$ and the line $y = \lambda x, \lambda > 0$, is $\frac{1}{2}$, then λ is equal to

(A) 48	(B) 24
(C) $4\sqrt{3}$	(D) $2\sqrt{6}$

Q.81 The area of the region, enclosed by the circlex² + y² = 2 which is not common to the region bounded by the parabola $y^2 = x$ and the straight line y = x, is

$(A)\frac{1}{6}(24\pi - 1)$	$(B)\frac{1}{6}(12\pi - 1)$
$(C)\frac{1}{3}(12\pi - 1)$	$(D)\frac{1}{3}(6\pi - 1)$

Q.82 The area (in sq. units) of the region{ $(x, y) \in R^2 \mid 4x^2 \le y \le 8x + 12$ } is

$(A)\frac{128}{3}$	$(B)\frac{125}{3}$
(C) $\frac{127}{3}$	(D) $\frac{124}{3}$

Q.83 For a > 0, let the curves $C_1: y^2 = ax and C_2: x^2 = ay$ intersect at origin 0 and a point P. Let the line x = b(0 < b < a) intersect the chordOP and the x-axis at points Q and R, respectively. If the line x = b bisects the area bounded by the curves, C_1 and C_2 , and the area of $\triangle OQR = \frac{1}{2}$, then ' a ' satisfies the equation (A) $x^6 + 6x^3 - 4 = 0$ (B) $x^6 - 12x^3 - 4 = 0$ (C) $x^6 - 6x^3 + 4 = 0$ (D) $x^6 - 12x^3 + 4 = 0$

Q.84 The area (in sq. units) of the region $\{(x, y) \in \mathbb{R}^2 : x^2 \le y \le 3 - 2x\}$, is (A) $\frac{31}{3}$ (B) $\frac{29}{3}$ (C) $\frac{34}{3}$ (D) $\frac{32}{3}$

Q.85 Given $f(x) = \begin{cases} x, 0 \le x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \le 1 \end{cases}$ and $g(x) = \left(x - \frac{1}{2}\right)^2$, $x \in \mathbb{R}$. Then the area (in sq. units) of the region bounded by the curves, y = f(x) and y = g(x) between the lines, 2x = 1 and $2x = \sqrt{3}$, is $(A) \frac{\sqrt{3}}{4} - \frac{1}{3}$ (B) $\frac{1}{3} + \frac{\sqrt{3}}{4}$ $(C) \frac{1}{2} - \frac{\sqrt{3}}{4}$ (D) $\frac{1}{2} + \frac{\sqrt{3}}{4}$ **Q.86** Area (in sq. units) of the region outside $\frac{|x|}{2} + \frac{|y|}{3} = 1$ and inside the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is (A) $3(4 - \pi)$ (B) $6(4 - \pi)$ (D) $3(\pi - 2)$ (C) $6(\pi - 2)$ **Q.87** Consider a region $R = \{(x, y) \in R^2 : x^2 \le y \le 2x\}$. if a line $y = \alpha$ divides the area of region R into two equal parts, then which of the following is true? (A) $3\alpha^2 - 8\alpha + 8 = 0$ (B) $\alpha^3 - 6\alpha^{3/2} - 16 = 0$ (C) $3\alpha^2 - 8\alpha^{3/2} + 8 = 0$ (D) $\alpha^3 - 6\alpha^2 + 16 = 0$ **Q.88** The area (in sq. units) of the region{ $(x, y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, \frac{1}{2} \le x \le 2$ } is (A) $\frac{79}{16}$ (C) $\frac{79}{24}$ (B) $\frac{23}{6}$ (D) $\frac{23}{16}$ **Q.89** The area (in sq. units) of the region A = { $(x, y): (x - 1)[x] \le y \le 2\sqrt{x}, 0 \le x \le 2$ }, where [t] denotes the greatest integer function, is (B) $\frac{4}{3}\sqrt{2} + 1$ (D) $\frac{4}{3}\sqrt{2} - \frac{1}{2}$ $(A) \frac{8}{2}\sqrt{2} - 1$ $(C)\frac{8}{2}\sqrt{2}-\frac{1}{2}$ **Q.90** The area (in sq. units) of the region A = $\{(x, y): |x| + |y| \le 1, 2y^2 \ge |x|\}$ is $(A) \frac{1}{6}$ $(C) \frac{5}{6}$ (B) $\frac{7}{6}$ $(D)\frac{1}{2}$ **Q.91** The area (in sq. units) of the region enclosed by the curves $y = x^2 - 1$ and $y = 1 - x^2$ is equal to $(B)\frac{4}{3}$ $(A)\frac{7}{2}$ $(C)\frac{1}{2}$ $(D)\frac{16}{2}$ **Q.92** The area of the region : $R = \{(x, y): 5x^2 \le y \le 2x^2 + 9\}$ is (A) $6\sqrt{3}$ sq. units (B) $11\sqrt{3}$ sq. units (C) $12\sqrt{3}$ sq. units (D) $9\sqrt{3}$ sq. units **Q.93** The area (in sq. units) of the part of the circlex² + $y^2 = 36$, which is outside the parabolay² = 9x, is (A) $12\pi + 3\sqrt{3}$ (B) $24\pi + 3\sqrt{3}$ (C) $12\pi - 3\sqrt{3}$ (D) $24\pi - 3\sqrt{3}$ **Q.94** Let A₁ be the area of the region bounded by the curves $y = \sin x$, $y = \cos x$ and y-axis in the first quadrant. Also, let A₂ be the area of the region bounded by the curves $y = \sin x$, $y = \cos x$, x-axis and $x = \frac{\pi}{2}$ in the first quadrant. Then, (A) $A_1: A_2 = 1: \sqrt{2}$ and $A_1 + A_2 = 1$ (B) $A_1: A_2 = 1: 2$ and $A_1 + A_2 = 1$ (C) $2A_1 = A_2$ and $A_1 + A_2 = 1 + \sqrt{2}$ (D) $A_1 = A_2$ and $A_1 + A_2 = \sqrt{2}$

Q.95 The area bounded by the curve $4y^2 = x^2(4-x)(x-2)$ is equal to

(A) $\frac{5\pi}{8}$	(B) $\frac{5\pi}{2}$
(C) $\frac{\pi}{8}$	(D) $\frac{\pi}{16}$

Q.96	The area (in sq. units) of the region, given (A) $\frac{8}{3}$ (C) $\frac{17}{3}$	h by the set {(x, y) $\in \mathbb{R} \times \mathbb{R} x \ge 0.2x^2 \le y \le 4 - 2x$ } is (B) $\frac{7}{3}$ (D) $\frac{13}{3}$
Q.97	The area of the region bounded by $y - x = x$	$= 2 \text{ and } x^2 = y \text{ is equal to}$
	$(A)\frac{2}{3}$	$(B)\frac{4}{3}$
	$(C)\frac{16}{3}$	(D) $\frac{9}{2}$
Q.98	0	
	$R = \{(x, y): \max\{0, \log_e x\} \le y \le 2^x, \frac{1}{2} \le x \le 2\}$	
	is, $\alpha(\log_e 2)^{-1} + \beta(\log_e 2) + \gamma$, then the value of $(\alpha + \beta - 2\gamma)^2$ is equal to	
	(A) 2	(B) 1
	(C) 8	(D) 4
Q.99	The area, enclosed by the curves $y = \sin x$ $\frac{\pi}{2}$, is	$x + \cos x$ and $y = \cos x - \sin x $ and the lines $x = 0, x = 0$
	(A) $4(\sqrt{2}-1)$	(B) $2\sqrt{2}(\sqrt{2}+1)$
	(C) $2\sqrt{2}(\sqrt{2}-1)$	(D) $2(\sqrt{2}+1)$
Q.100	The area of the region bounded by the pa 1), the tangent to it at the point whose or	

1), the tangent to it at the p	ooint whose ordinate is 3 a
(A) 4	(B) 6
(C) 10	(D) 9

17

- **Q.1** Find the area between the curve $f(x) = 3 + 2x x^2$ and the x-axis.
- **Q.2** Find the area to the left of $g(y) = 3-y^2$ and to the right of x=-1

с ded by the provided set of curves.

For problems 3 – 11, find the area of the region bounded by the provided set of curves.
Q.3
$$y = x^2 + 2$$
, $y = \sin(x)$, $x = -1$ and $x = 2$
 $y = \frac{8}{x}$, $y = 2x$ and $x = 4$
Q.4
Q.5 $x = 3 + y^2$, $x = 2 - y^2$, $y = 1$ and $y = -2$
Q.6 $x = y^2 - y - 6$ and $x = 2y + 4$
Q.7 $y = x\sqrt{x^2 + 1}$, $y = e^{-\frac{1}{2}x}$, $x = -3$ and the y-axis.
Q.8 $y = 4x + 3$, $y = 6 - x - 2x^2$, $x = -4$ and $x = 2$
 $y = \frac{1}{x + 2}$, $y = (x + 2)^2$, $x = -\frac{3}{2}$, $x = 1$
Q.10 $x = y^2 + 1$, $x = 5$, $y = -3$ and $y = 3$
Q.11 $x = e^{1+2y}$, $x = e^{1-y}$, $y = -2$ and $y = 1$
Q.12 Find area bounded by curve $y = x$, x-axis and $x = 1$ (using integration).
Q.13 Find the area bounded by the curve $y = \log_e x$, the x-axis and the ordinates $x = -2$ and $x = 1$.
Q.15 Find the area bounded by the curve $y = \log_e x$, the x-axis and the straight line $x = e$.
Q.16 Find the area bounded by the circle $x^2 + y^2 = 16$ and the line $y = x$ in the first quadrant.
Q.17 AOB is the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
where OA = a, OB = b. Then find the area between the arc AB and the chord AB of the ellipse.
Q.18 Find area bounded by curve $y = x^2$ and $y = x^3$.
Q.19 Sketch the graph of $y = |x + 3|$ and evaluate $\int_{-6}^{0} |x + 3|$ dx.

- **Q.20** The area bounded by the y-axis; $y = \cos x$, $y = \sin x$ when $0 \le x \le \frac{\pi}{2}$ is given by
- **Q.21** Sketch the curves and identify the region bounded by $x = \frac{1}{2}$, x = 2, $y = \log_e x$ and $y = 2^x$. Find the area of the region.
- **Q.22** Find the area of the region $\{(x, y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$.

Q.	1	2	3	4	5	6	7	8	9	10
Ans.	В	A	A	В	B	C	В	A	A	С
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	С	D	В	А	С	В	С	В	С	D
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	В	D	D	С	A	В	В	A	A	С
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	А	В	D	С	В	D	В	С	D	А
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	С	В	A	В	Α	А	С	D	Α	В
Q.	51	52	53	54	55	56	57	58	59	60
Ans.	D	С	В	А	В	С	С	С	D	D
Q.	61	62	63	64	65	66	67	68	69	70
Ans.	В	С	В	С	В	С	В	A	В	С
Q.	71	72	73	74	75	76	77	78	79	80
Ans.	D	А	В	D	С	Α	А	Α	В	В
Q.	81	82	83	84	85	86	87	88	89	90
Ans.	В	А	D	D	A	С	С	С	С	С
Q.	91	92	93	94	95	96	97	98	99	100
Ans.	С	С	D	А	В	В	D	А	С	D

ANSWER KEY - LEVEL - I

ANSWER KEY - LEVEL - II

- **Q.1** $\frac{32}{3}$
- **Q.2** $\frac{32}{3}$
- **Q.3** 8. 04355
- **Q.4** 6.4548
- **Q.5** 9
- 343
- 6 Q.6
- $-\frac{7}{3} + 2\mathbf{e}^{\frac{3}{2}} + \frac{1}{3}10^{\frac{3}{2}} = 17.17097$ Q.7 343 **Q.8** 12 **Q.9** 7.9695 46 Q.10 3
- **Q.11** 22.9983