

Q.1	1 The value of $\lim_{x\to 2}([2-x] + [x-2] - x)$ equals (where ['] denotes greatest intege					
	(A) 0	(B) 3				
	(C) -3	(D) Does not exist				
Q.2	The value of $\lim_{\theta \to 0^+} \frac{\sin \sqrt{\theta}}{\sqrt{\sin \theta}}$ is equal to					
	(A) 0	(B) 1				
	(C) –1	(D) Does not exist				
Q.3	The value of $\lim_{h\to 0} \{\frac{1}{h \cdot (8+h)^{1/3}} - \frac{1}{2h}\}$ equals					
	$(A)\frac{1}{12}$	$(B)\frac{-4}{2}$				
	$\binom{-16}{12}$	$(D) \frac{-1}{-1}$				
	(0) 3					
Q.4	The value of $\lim \left\{ \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right\}$ equals					
	(A) 0	$(B)^{\frac{1}{2}}$				
	(1)	$\left(D \right) \log 2$				
Q.5	The value of $\lim_{x\to 0} \frac{\sin x + \log (1-x)}{x^2}$ equals					
	(A) 0	$(B)\frac{1}{2}$				
	$(C)\frac{-1}{2}$	(D) -1				
0.6	The value of lim ^{tan x-sin x} equals					
4.0	$x \to 0$ x^3 equals	$(\mathbf{p})^{1}$				
	(A) I	$(B)\frac{1}{2}$				
	$(C)\frac{-1}{2}$	(D) -1				
Q.7	$\lim_{n\to\infty} (3^n + 5^n + 7^n)^{1/n}$ is equal to					
	(A) e^3	(B) e ⁵				
	(C) 5	(D) 7				
Q.8	The value of $\lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^4} =$					
	(A) 1	(B) 6				
	$(C) - \frac{1}{6}$	(D) $\frac{1}{6}$				
0.9	The value of $\lim(\frac{1}{2} - \cot x)$ equals					
v	$(A) -\infty$	(B) ()				
	(C) ∞	(D) Does not exist				

Q.10	The value of $\lim_{x \to -\infty} \frac{[x] + [2x] + \dots + [nx]}{x^2}$, where [.] is greatest integer function, is equal to						
	(A) x	$(B)\frac{x}{2}$					
	(C) $\frac{x}{3}$	(D) $\frac{x^2}{2}$					
0 1 1	The function $f(x) = \frac{\cos x - \sin x}{\sin x}$ is not defined at $x = \frac{\pi}{2}$. The value of $f(\frac{\pi}{2})$ so that $f(x)$ is continuous.						
Q.11	$at x = \frac{\pi}{10} is$	4 and 4 . The value of $\binom{4}{4}$ so that $\binom{1}{3}$ is contained as					
	(A) 1	(B) - 1					
	(C) $\sqrt{2}$	(D) $\frac{1}{\sqrt{2}}$					
0 12	The function $f(x) = \frac{\log(1+ax) - \log(1-bx)}{\log(1-bx)}$ is not	the defined at $x = 0$ is not defined at $x = 0$. The value					
Q.12	which should be assigned to f at $y = 0$ so that it is continuous at $y = 0$ is						
	(B) a + b						
	(C) loga +logb	(D) 0					
Q.13	The value of f(0), so that the function $f(x) = \frac{2x-s}{2x+\sin^{-1}x}, x \neq 0$, is continuous at each point in its domain is equal to						
	(A) 2	$(B)\frac{1}{2}$					
	(C) $\frac{2}{3}$	$(D) - \frac{1}{3}$					
0 14	The value of $f(0)$ so that the function $f(x)$	$=\frac{\log(1+x^2\tan x)}{2}$ x $\neq 0$ continuous at x = 0 is given by					
Q.1 I	(A) 1	$\frac{1}{\sin x^3}$ (B) 0					
	(C) 2	(D) -1					
Q.15	In order that $f(x) = (x + 1)^{\cot x}$ is continuous at $x = 0$, $f(0)$ must be equal to						
	(A) 0	(B) e					
	$(C)\frac{1}{e}$	(D) e ²					
Q.16	The value of f(0), so that the function $f(x) = \frac{1 - \cos(1 - \cos x)}{x^4}$ is continuous everywhere, is						
	$(A)\frac{1}{8}$	$(B)\frac{1}{2}$					
	$(C)\frac{1}{4}$	$(D)\frac{1}{6}$					
	(ax + 1, x < 1)						
Q.17	Let $f(x) = \begin{cases} 3, & x = 1 \text{. The value of 'a} \\ bx^2 + 1, & x \ge 1 \end{cases}$	' and 'b' for which $f(x)$ is continuous at $x = 1$ is given by					
	(A) 2, 2	(B) 1, 2					
	(C) 3, 2	(D) 1, 1					
Q.18	Which of the following functions have finit.	te number of points of discontinuity on real set? (where					
	(A) tanx	(B) x[x]					
	(C) $\frac{ \mathbf{x} }{\mathbf{x}}$	(D) $sin[m\pi x], n \in N$					
0.19	The values of a and b. so that the function	$f(x) = \begin{cases} x^2 + 3x + a : \text{ when } x \le 1 \\ x = \begin{cases} x^2 + 3x + a : x \\ x = x \end{cases}$ is differentiable for					
v	each $v \in in \mathbb{R}^{n}$ are respectively	(bx + 2); when $x > 1^{-1}$					
	(A) 3, 5	(B) 5, 7					
	(C) 4,8	(D) 6, 5					

Q.20	Let $f(x) = \max\{x, x^3\}$. Set of points on which $f(x)$ is not differentiable is					
	(A) {-1,1}	(B) {-1,0}				
	$(C) \{0,1\}$	$(D) \{-1,0,1\}$				
Q.21	The number of points where $f(x) = x^2 - 3x + 2 $ is non-differentiable is					
•	(A) 0	(B) 1				
	(C) 2	(D) 3				
0.00						
Q.22	If [] represents greatest integer function, k is an integer, is given by	then the left hand derivative of $f(x) = [x] \sin \pi x$ at $x = k$,				
	(A) $(-1)^{k}(k-1)\pi$	(B) $(-1)^{k-1}(k-1)\pi$				
	(C) $(-1)^k \cdot k\pi$	(D) $(-1)^{k-1} \cdot k\pi$				
0.22						
Q.23	The largest set of points, where the function (A) ($a = a$)	f(x) = x x is differentiable, is given by				
	$(A) (-\infty, \infty)$	(B) $(-\infty, 0) \cup (0, \infty)$				
	(C) (0, \overline)	$(D)(0,\infty)$				
Q.24	The set of all points, where the function $f(x) = \frac{x}{1+ x }$ is differentiable, is given by					
	(A) $(-\infty,\infty)$	$(B) (-\infty, 0) \cup (0, \infty)$				
	(C) (0,∞)	(D) (0,∞)				
0.25	If $f(x) = x - 2020 $, then $f'(x)$ at $x = 201$	9, is given by				
U	(A) 1	(B) -1				
	(C) 0	(D) 2019				
Q.26	Let $f(2) = 4$, $f'(2) = 4$. Then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$	^b is				
	$(A) - \frac{1}{3}$	(B) -2				
	(C) -4	(D) 3				
	$4^{x}+9^{x}$, 1					
Q.27	$\lim_{x \to 0} (-2)^{x} \text{ equals}$					
	(A) 2	(B) 6				
	(C) 16	(D) 112				
Q.28	The value of $\lim(\frac{\sin 2x}{x} + \frac{e^{x}-1}{x} + \frac{\log(1+x)}{x})$ is equal to					
	(A) 4	(B) 3				
	(C) 2	(D) 1				
0.20						
Q.29	If the function $f(x) = (1 - x) \tan \frac{1}{2}$ is con	(11000 s at X - 1, (11011)) =				
	(A) $\frac{-}{\pi}$	(B) $\frac{1}{2}$				
	(C) 0	(D) 2π				
Q.30	Let the function $f(x)$ be defined as					
·	$\left(\frac{\ln x - 1}{2}, x \neq e\right)$					
	$f(x) = \begin{cases} x - e^{-x} & x - e^{-x} \end{cases}$					
	(k, x = e					
	The value of k, for which the function is c	ontinuous at $x = e$, is equal to				
	(A) e	(B) $\frac{1}{e}$				
	(C) e^2	(D) -e				

Q.31	At $x = 0$, the function $y = e^{- x }$ is (A) Continuous (C) Differentiable with derivative = 1	(B) Continuous and differentiable (D) Differentiable with derivative $= -1$					
Q.32	Suppose $f(x)$ is differentiable at $x = 1$ and $Lt_{n \to 0} \frac{1}{n} f(1 + n) = 5$, then $f'(1)$ equals						
	(A) 6	(B) 5					
	(C) 4	(D) 3					
0.33	If $f(x) = \log x $ then for $x \neq 0$, $f'(x)$ is equ	ial to					
Q	(A) $\frac{1}{1-1}$	$(B)^{\frac{1}{2}}$					
	$(C) - \frac{1}{2}$	$(D) + \frac{1}{2}$					
	x x	$(2) \pm x$					
Q.34	Differential coefficient of log ₁₀ x w.r.t. log	x 10 is					
	(A) $-\frac{(\log x)^2}{(\log 10)^2}$	$(B)\frac{(\log_{10} x)^2}{(\log 10)^2}$					
	(C) $\frac{(\log_x 10)^2}{2}$ (D) $-\frac{(l)^2}{2}$	$\log 10)^2$					
	$(\log 10)^2$	$\log x)^2$					
Q.35	5 In [0,1], Lagrange mean value theorem is NOT applicable to						
	(A) $f(x) = \begin{cases} \frac{1}{2} - x, x < \frac{1}{2} \\ \frac{1}{2} - x, x < \frac{1}{2} \end{cases}$	(B) $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \end{cases}$					
	$\left((\frac{1}{2} - x)^2, x \ge \frac{1}{2}\right)$	(1) f(x) = 0					
	(C) f(x) = x x	(D) f(x) = x					
Q.36	Let $a = \lim_{x \to a} x \cot x$ and $b = \lim_{x \to a} x \cot x$, then						
	(A) a = b	(B) b > a					
	(C) $a = b + 1$	(D) $b = a + 1$					
0.27	$\lim_{x \to \infty} \frac{(1+x+x^2)}{x}$ is equal to						
Q.37	$\lim_{x \to \infty} \frac{(\ln x)^3}{(\ln x)^3}$ is equal to	$(\mathbf{P}) \mathbf{a}^2$					
	(A) 2 (C) e^{-2}	(D) ∞					
Q.38	B Let $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$, then $f(x)$ is						
	(A) Continuous on $[-1,1]$ and differentiable on $(-1,1)$ (B) Continuous on $[-1,1]$ and differentiable on $(-1,0) \cup (0,1)$						
	(C) Continuous and differentiable on (-1)	.1)					
	(D) Discontinuous and differentiable on $(-1,1)$						
	f(x+h) - f(x-h)						
Q.39	The value of $\lim_{h \to 0} \frac{1}{h}$ is equal to						
	(A) $f'(x)$ (C) $2f'(x)$	$ \begin{array}{c} (B) \ 0 \\ (D) \ -f'(x) \end{array} $					
0.40	$\int \frac{x^2 + 3x + p}{2(x^2 - 1)}, x \neq 1$						
Q.40	If $f(x) = \begin{cases} 2(x-1) & \text{is continuous at} \\ \frac{5}{2}, x = 1 \end{cases}$	t x = 1 then					
	(A) $p = 2$	(B) $p = 0$					
	(C) $p = -4$	(D) $p = 5$					
Q.41	If $y = \frac{e^x - e^{-x}}{e^x - e^{-x}}$, then $\frac{dy}{dx} = \frac{dy}{dx}$						
-	(A) $1 + y^2$ ax	(B) $1 - y^2$					
	(C) $y^2 - 1$	(D) $y^2 + 2$					

Q.42 If $y = \cos^{-1}(\cos x)$ then $\frac{dy}{dx}$ at $x = \frac{5\pi}{4}$ is equal to (A) 1 (B) -1 $(C)\frac{1}{\sqrt{2}}$ (D) $\sqrt{2}$ **Q.43** If $f(x) = -\sqrt{25 - x^2}$, then $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$ is equal to (B) $\frac{1}{5}$ (D) $\frac{1}{\sqrt{24}}$ $(A)\frac{1}{24}$ (C) $-\sqrt{24}$ **Q.44** If f be a function of 'x ' such that f(9) = 9, f'(9) = 3, then $\lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3}$ is (B) 3 (A) 9 $(D)\frac{1}{2}$ (C) 1 **Q.45** The value of $\lim_{x\to 0} (1 - \frac{1}{2^x})(\frac{1}{\sqrt{\tan x + 4} - 2})$ is (A) log_a 16 (B) does not exist (C) 3ℓn 2 (D) 4ℓn2 **Q.46** If $\lim_{x \to 0} \frac{\sin 6x}{\tan 3x} = a$, $\lim_{x \to \infty} \frac{\sin x}{x} = b$, $\lim_{x \to \infty} \frac{\log x}{x} = c$ then value of a + b + c is (B) 2 (A) 1 (C) 3 (D) 4 **Q.47** $\lim_{x\to 0} \frac{\operatorname{xtan} 2x - 2\operatorname{xtan} x}{(1 - \cos 2x)^2}$ equals $(B)\frac{1}{3}$ (A) 1 $(C)^{\frac{1}{4}}$ $(D)\frac{1}{2}$ **Q.48** $\lim_{x\to 2^+} \left(\frac{|x|^3}{3} - [\frac{x}{3}]^3\right)$ is, (where [] is G.I.F.) (B) $\frac{64}{27}$ (A) 0 $(C)\frac{8}{2}$ (D) does not exist **Q.49** Let α and β be the distinct root of $ax^2 + bx + c = 0$, then $\lim_{x \to \alpha} \frac{1 - \cos(ax^2 + bx + c)}{(x - \alpha)^2}$ is equal to (B) $-\frac{a^2}{2}(\alpha - \beta)^2$ (D) $\frac{a^2}{2}(\alpha - \beta)^2$ $(A)\frac{1}{2}(\alpha-\beta)^2$ (C) 0 **Q.50** The value of $\lim_{x\to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$ equals (A) –π (B) π $(C)\frac{\pi}{2}$ (D) e **Q.51** $\lim_{x\to 0} (\frac{1}{x^2} - \frac{1}{\tan^2 x})$ equals (A) 0 $(B)\frac{1}{3}$ $(C)\frac{2}{2}$ $(D)\frac{1}{2}$ **Q.52** If $\lim_{x\to 0} (\cos x + a\sin bx)^{1/x} = e^2$, then the values of a and b can be (A) a = 1, b = -2(C) $a = 2\sqrt{2}, b = \frac{1}{\sqrt{2}}$ (B) $a = 2\sqrt{2}, b = \sqrt{2}$ (D) a = -2, b = 1

Q.53 If $\{x\}$ denotes the fractional part of x. Then $\lim_{x \to 0} \frac{\{x\}}{\tan\{x\}}$ is equal to (A) 1 (B) 0 (C) -1 (D) Limit doesn't exist **Q.54** If α and β be the roots of the equation $ax^2 + bx + c = 0$ then $\lim_{x \to \frac{1}{\alpha}} \sqrt{\frac{1 - \cos^2(cx^2 + bx + a)}{4(1 - \alpha x)^2}}$ equals (B) $\left| \frac{c}{2\alpha} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right) \right|$ (A) Not possible (C) $\left| \frac{c}{2\alpha} \left(\frac{1}{\alpha} - \frac{1}{\beta} \right) \right|$ (D) $\left| \frac{c}{2} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right) \right|$ **Q.55** If $\lim_{x \to \infty} (1 + \frac{a}{x} + \frac{b}{x^2})^{2x} = e^2$, then the value of a and b are (A) $a \in R, b \in R$ (B) $a = 1, b \in R$ (D) a = 1, b = 2(C) $a \in R, b = 2$ **Q.56** If the value of $\lim_{x\to 0} \frac{(1+\sin x)^{cosec} -e + (\frac{\sin x}{2})e}{\sin^2 x}$ isk, then (24k - 11e) is equal to (A) 0 (B) 1 (C) 2 (D) 3 **Q.57** Let $S_n = \frac{1}{1.4} + \frac{1}{4.7} + \frac{1}{7.10} + \cdots$ to n terms then $\lim_{n \to \infty} S_n$ is equal to $(A)\frac{1}{3}$ $(C)\frac{1}{4}$ (B) 3 (D) ∞ **Q.58** Let $t_r = \frac{r}{1+r^2+r^4}$, then $\lim_{n \to \infty} \sum_{r=1}^n t_r$ equals (A) $\frac{1}{4}$ (C) $\frac{1}{2}$ (B) 1 $(D)\frac{1}{2}$ **Q.59** If f(x) and g(x) be differentiable functions and f(1) = g(1) = 2 then $\lim_{x \to 1} \frac{f(1) \cdot g(x) - f(x) \cdot g(1) - f(1) + g(1)}{g(x) - f(x)}$ is equal to (B) 1 (A) 0 (C) 2 (D) -2 **Q.60** $f(x) = \begin{cases} \frac{\sqrt{1+px}-\sqrt{1-px}}{x} & -1 \le x < 0\\ \frac{2x+1}{x-2} & 0 \le x \le 1 \end{cases}$; is continuous in the interval [-1,1], then p equals (B) $-\frac{1}{2}$ (A) -1 $(C)\frac{1}{2}$ (D) 1 **Q.61** If $f(x) = \begin{cases} \frac{a|x^2 - x - 2|}{2 + x - x^2}, & x < 2 \\ b, & x = 2; \text{ is continuous at } x = 2 \text{ and } [] \text{ is G.I.F., then values of a and h are} \\ \frac{x - [x]}{x - 2}, & x > 2 \end{cases}$ (A) a = 1, b = 1(B) a = 1, b = 2(D) a = 2, b = 2(C) a = 2, b = 1

0.62 The function $f(x) = \sin^{-1}(\cos x)$ is (A) Continuous at x = 0(B) Discontinuous at x = 0(C) Differentiable at x = 0(D) Differentiable at $x = \pi$ **Q.63** If $f(x) = \begin{cases} x e^{-(\frac{1}{|x|} + \frac{1}{x})}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ (A) Continuous for all x but not differentiable everywhere (B) Neither differentiable nor continuous (C) Discontinuous everywhere (D) Continuous as well as differentiable for all x **Q.64** The number of points at which the function $f(x) = \frac{1}{\log |x|}$ is discontinuous is (A) 1 (B) 2 (C) 3 (D) 4 **Q.65** The value of f(0) so that $f(x) = \frac{(4^{x}-1)^{3}}{\sin\frac{x}{4} \cdot \log(1+\frac{x^{2}}{3})}$; is continuous everywhere is (A) $3(\log 4)^3$ (B) $4(\log 4)^3$ (C) $12(\log 4)^3$ (D) $15(\log 4)^3$ **Q.66** Let $f(x) = \begin{cases} \frac{3|x|+4\tan x}{x}, & x \neq 0\\ k, & x = 0 \end{cases}$; then f(x) is continuous at x = 0 for (A) k = 7(B) k = 1(C) No values of k (D) k = 2**Q.67** If the function $f(x) = \frac{x(e^{\sin x} - 1)}{1 - \cos x}$ is continuous at x = 0 then f(0) = 0(A) 1 (B) 0 $(D)\frac{1}{2}$ (C) 2 **Q.68** If $f(x) = \begin{cases} [x] + [-x], & x \neq 0 \\ \lambda, & x = 0 \end{cases}$, where [.] denotes the (B) 0 (A) -1 (C) 1 (D) No value is possible **Q.69** Let $f(x) = \begin{cases} \frac{\sin[x]}{|x|}, [x] \neq 0\\ 0, [x] = 0 \end{cases}$, then f(x) is ([.] denotes the greatest integer function) (A) Continuous at x = 0(B) Left continuous at x = 0(C) Differentiable at x = 0(D) Right continuous at x = 0**Q.70** If $f(x) = \begin{cases} px^2 - q, x \in [0,1) \\ x + 1, x \in (1,2] \end{cases}$; and f(1) = 2, then the value of the pair (p,q) for which f(x)cannot be continuous at x = 1 is (B) (1, -1)(A) (2,0) (C) (4,2) (D) (1,1) **Q.71** If $f(x) = e^{\frac{-1}{x^2}}$, $x \neq 0$ and f(0) = 0 then f'(0) is (A) 0 (B) 1 (C) e (D) 2

Q.72 If $f(x) = \begin{cases} \frac{1}{1+e^{1/x}}, x \neq 0\\ 0, x = 0 \end{cases}$; then f(x) is (A) Continuous at x = 0(B) Continuous and differentiable at x = 0(C) Continuous but not differentiable at x = 0(D) Continuous but not differentiable at x = 0**Q.73** Domain of differentiability of the function $f(x) = |x - 2|\cos x$ is (A) R (B) $R - \{2\}$ $(C) (0, \infty)$ (D) {2} **Q.74** Let $f(x) = \frac{\sin(\pi[x+\pi])}{1+|x|^2}$, where [] denotes the greatest integer function, then f(x) is (A) Continuous and differentiable at all $x \in R$ (B) Continuous but not differentiable at some x (C) Differentiable but not continuous at x = 0(D) Neither continuous nor differentiable at x = 0Q.75 Let $f(x) = \begin{cases} \frac{|x+1|}{\tan^{-1}(x+1)}, & x \neq -1 \\ 1, & x = -1 \end{cases}$. Then f(x) is (A) Continuous at x = -1(B) Differentiable at x = -1(C) Discontinuous at x = -1(D) Continuous but not derivable at x = -1**Q.76** The function $|x^2 - 3x + 2| + \cos |x|$ is not differentiable at x = (B) -1, -2(A) - 1,2(C) 1,2 (D) −2,1 **Q.77** Let f(x) = [x], g(x) = |x| and $f\{g(x)\} = h(x)$, where $[\cdot]$ is the greatest integer function. Then h'(-1) is (A) 0 (B) −∞ (C) Does not exist (D) 5 **Q.78** Let $f(x) = \max\{4, 1 + x^2, x^2 - 1\} \forall x \in$ R. Total number of points, where f(x) is non-differentiable, is equal to (A) 2 (B) 4 (C) 6 (D) 0 **Q.79** Let $f(x) = \begin{cases} max\{|x|, x^2\}, & |x| \le 2\\ 8 - 2|x|, & 2 < |x| \le 4 \end{cases}$ Let S be the set of points in the interval (-4,4) at which f is not differentiable. Then S (A) Equals {-2, -1,0,1,2} (B) Equals {-2,2} (C) Is an empty set (D) Equals $\{-2, -1, 1, 2\}$ **Q.80** If $x \log_{\theta}(\log_{e} x) - x^{2} + y^{2} = 4(y > 0)$, then $\frac{dy}{dx}$ at x = e is equal to (A) $\frac{(2e-1)}{2\sqrt{4+e^{2}}}$ (B) $\frac{(1+2e)}{2\sqrt{4+e^{2}}}$ (A) $\frac{(2e-1)}{2\sqrt{4+e^2}}$ (C) $\frac{(1+2e)}{\sqrt{4+e^2}}$ (D) $\frac{e}{\sqrt{4+e^2}}$

Q.1 Show that the function
$$\begin{cases} x \sin(\frac{1}{x}), when x \neq 0, \text{ is continuous but not differentiable at x = 0 when x = 0' when$$

18

ANSWER KEY – LEVEL – I										
Q.	1	2	3	4	5	6	7	8	9	10
Ans.	С	В	D	В	C	В	D	D	D	В
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	D	В	В	A	В	A	A	C	A	D
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	С	A	A	A	В	С	В	A	A	В
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	A	В	В	A	A	С	D	В	С	С
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	В	В	D	В	D	В	D	C	D	В
Q.	51	52	53	54	55	56	57	58	59	60
Ans.	С	С	D	С	В	A	A	C	C	В
Q.	61	62	63	64	65	66	67	68	69	70
Ans.	Α	Α	A	C	C	C	C	A	D	D
Q.	71	72	73	74	75	76	77	78	79	80
Ans.	А	D	В	А	С	С	С	А	А	А