	EXERCIS	SE LEVEL -I
		EL-I
Q.1		ossesses (B) 4 elements (D) 7 elements
Q.2	What defines the order of a matrix?	
C	(A) The product of the number of rows and (B) The product of the number of columns	
	(C) The product of the number of columns(D) The product of the number of columns	d the number of rows
~ ~		
Q.3		$(B) 2 \times 8$
	$(C)4 \times 4$	(D)All of these
Q.4	If a matrix comprises 13 elements, then the poset (A) 1×13 or 13×1	ssible orders of the matrix are (B) 1×26 or 26×1
	(C) 2×13 or 13×2	(D)None of these
Q.5	If A is matrix or order m \times n and B is a matrix s of matrix B?	ruch that AB' and B'A are both defined, then what is the order
	(A) $m \times m$	(B) $n \times n$ (D) $m \times n$
06		
Q.6	Identify the upper triangular matrix in the (A) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$	$ \begin{array}{c} \text{following.} \\ 4 & 2 \\ 0 & 3 \end{array} \qquad (C) \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} \qquad (D) \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} $
	$\begin{bmatrix} (1) & 2 & 0 \\ 3 & 0 & 3 \end{bmatrix} $	$\begin{bmatrix} 0 & 5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} (0) & [0 & 0 & 4] \\ 0 & 0 \end{bmatrix}$
Q.7	In the following options, identify the singular (1) (2) (3) (2) (3) (2)	
	$(A) \begin{bmatrix} 2 & 3 \\ 1 & 3 \end{bmatrix} \qquad (B) \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$	$ (C) \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} $
Q.8	Recognize the scalar matrix $\begin{bmatrix} -1 & 3 \end{bmatrix}$	(D) [0 3]
	Γ <u>4</u> Ω	(B) $\begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$ (D) None of these
Q.9	For any square matrix $A = [a_{ij}]$, where $a_{ij} = [a_{ij}]$	
		(B) scalar matrix (D) none of these

0.10 A row matrix has only-(A) one element (B) one row with one or more columns (C) one column with one or more rows (D) one row and one column Q.11 A matrix $A = (a_{ij})_{m \times n}$ considered a square matrix if-(A) m = n(B) m ≤ n (C) $m \ge n$ (D) m < nQ.12 In the following options, identify the diagonal matrix $(C) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (D) \begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ (A) $\begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$ Q.13 If matrix A has p elements in each row and q elements in each column, then the order of A is: (A) $p \times p$ (B) $q \times q$ $(C) p \times q$ (D) $q \times p$ Find the matrix 2A where A = $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 5 & 6 \end{bmatrix}$ is given, Q.14 $\begin{array}{c} \text{(A)} \begin{bmatrix} 2 & 4 & 6 \\ 2 & 3 & 4 \\ 0 & 5 & 6 \end{bmatrix} \\ \text{(C)} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 10 & 12 \end{bmatrix}$ $(B) \begin{bmatrix} 1 & 2 & 3 \\ 4 & 6 & 8 \\ 0 & 5 & 6 \end{bmatrix}$ $(D) \begin{bmatrix} 2 & 4 & 6 \\ 4 & 6 & 8 \\ 0 & 10 & 12 \end{bmatrix}$ Find the value of a, if $X = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ and $3X - \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$, is given. Q.15 (A) -2 (D) 1 **Q.16** If $A = \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 2 & -2 \end{bmatrix}$, find the transpose of the product $(AB)^{T}$ (A) $\begin{bmatrix} 11 & -2 \\ 5 & -6 \end{bmatrix}$ (B) $\begin{bmatrix} 11 & 5 \\ -2 & -6 \end{bmatrix}$ $(B) \begin{bmatrix} 11 & 5\\ -2 & -6 \end{bmatrix}$ $(D) \begin{bmatrix} 7 & 0\\ 1 & -8 \end{bmatrix}$ $(C)\begin{bmatrix}7&1\\0&0\end{bmatrix}$ If A and B are matrices of order m \times n and n \times m respectively, what is the order of the matrix B^{T} Q.17 $(A^{T})^{T}$. (A) $m \times n$ (B) $m \times m$ (C) $n \times n$ (D) Not defined If A, B, C, are three matrices, what does $A^{T} + B^{T} + C^{T}$ equal to? Q.18 (B) A + B + C (C) - (A + B + C) (D) $(A + B + C)^{T}$ (A) zero matrix If $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 \\ -1 & 1 \end{bmatrix}$, which statement is correct? Q.19 (B) $AA^T = A^2$ (A) AB = BA(C) $AB = B^2$ (D) None of these If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, what is the value of AA^{T} . (A) $\begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ (B) $\begin{bmatrix} \cos^{2} \theta \\ \sin^{2} \theta \end{bmatrix}$ Q.20 $(B)\begin{bmatrix}\cos^2\theta & \sin^2\theta\\\sin^2\theta & \cos^2\theta\end{bmatrix}$ $(D)\begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}$ $(C)\begin{bmatrix}1&0\\0&1\end{bmatrix}$

Q.21	If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$, what is the determinant of	$ A + A^{T} .$	
	(A) $4(a^2 - b^2)$	(B) $2(a^2 - b^2)$	
	(C) $a^2 - b^2$	(D) 4 ab	
Q.22	Identify the false statement for suitable n	natrices A, B.	
	$(A) (AB)^{T} = A^{T}B^{T}$	$(B) (A^{T})^{T} = A$	
	$(C) (A - B)^{T} = A^{T} - B^{T}$	(D) $(A^T)^{-1} = (A^{-1})^T$	
0.23	If $A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 4 \\ 2 & 1 \\ 1 & 3 \end{bmatrix}$, what is the	transpose of the product (AB)'	
•			
	(A) $\begin{bmatrix} 16 & 22 \\ 23 & 31 \end{bmatrix}$	(B) $\begin{bmatrix} 16 & 23 \\ 22 & 31 \end{bmatrix}$	
	(C) $\begin{bmatrix} 22 & 31\\ 16 & 30 \end{bmatrix}$	(D) $\begin{bmatrix} 23 & 16\\ 31 & 20 \end{bmatrix}$	
0.24	If $A = \begin{bmatrix} 3 & x \\ y & 0 \end{bmatrix}$ and $A = A^{T}$, then -		
C	$[y \ 0]$ (A) x = 0, y = 3	(B) $x + y = 3$	
	(C) $x = y$	(D) $x = -y$	
Q.25	If $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, what is the result	of AA'	
-	$(A) I \qquad (B) A$	(C) A'	(D) 0
Q.26	If A is a matrix of order 3×4 , then both A	$_{\rm ABT}$ and $_{\rm BTA}$ are defined if order o	f R is -
Q120	(A) 3×3 (B) 4×4	(C) 4 × 3	(D) 3×4
	[0 5 -7]		
Q.27	Matrix $\begin{bmatrix} 0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0 \end{bmatrix}$ is a-		
	(A) diagonal matrix	(B) upper triangular matrix	
	(C) skew-symmetric matrix	(D) symmetric matrix	
Q.28	If A and B are square matrices of same or $A + A^{T} = A^{T} + B^{T}$		-symmetric-
	(A) $\frac{A+A^{T}}{2}$ (B) $\frac{A^{T}+B^{T}}{2}$ (C) $\frac{A^{T}-2}{2}$	$\frac{B^{T}}{2} \qquad (D) \frac{B - B^{T}}{2}$	
Q.29	If A is both a symmetric and skew symme	etric matrix, then -	
	(A) A is a diagonal matrix	(B) A is a null matrix	
	(C) A is a unit matrix	(D) A is a triangular matrix	
Q.30	If $A - A' = 0$, then A' is -		
	(A) orthogonal matrix(C) skew- symmetric matrix	(B) symmetric matrix(D) triangular matrix	
Q.31	If matrix $\begin{bmatrix} x & y \\ u & v \end{bmatrix}$ is symmetric, then -		
	(A) $x + v = 0$ (B) $x - v = 0$	(C) $y + u = 0$	(D) $y - u = 0$

CLASS ·	- 12 JEE – MATHS
Q.32	 If A is symmetric matrix and B is a skew- symmetric matrix, determine the incorrect statement for n ∈ N. (A) Aⁿ is symmetric (B) Aⁿ is symmetric only when n is even (C) Bⁿ is skew symmetric when n is odd (D) Bⁿ is symmetric when n is even
Q.33	If A is a square matrix, then A- A' is -(A) unit matrix(B) null matrix(C) A(D) a skew symmetric matrix
Q.34	Consider a square matrix denoted by A. Identify which of the options is not a symmetric matrix. $(A) A + A'$ $(B) AA'$ $(C) A'A$ $(D) A - A'$
Q.35	What is the total number of elementary operations that can be performed on matrices?(a) 3(b) 2(c) 6(d) 5
Q.36	After applying the operation $R_1 \rightarrow R_1 + R_2$ to the matrix $A = \begin{bmatrix} 2 & 3 \\ 6 & 4 \end{bmatrix}$, which of the following matrices will be the resulting new matrix? (a) $\begin{bmatrix} 8 & 7 \\ 6 & -4 \end{bmatrix}$ (b) $\begin{bmatrix} 8 & 7 \\ 6 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 8 & 7 \\ 6 & 5 \end{bmatrix}$ (d) $\begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix}$
Q.37	If the elementary operation $R_1 \rightarrow 2R_1 + 3R_2$ is applied to the matrix, which of the following matrices will remain unchanged? (a) $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 1 & 2 \\ 1 & 0 \end{bmatrix}$
Q.38	Which one of the following does not qualify as a valid elementary operation?(a) $R_i \leftrightarrow R_j$ (b) $R_i \rightarrow R_j + kR_i$ (c) $R_i \rightarrow kR_i$ (d) $R_i \rightarrow 1 + kR_i$
Q.39	Which elementary operation has been performed on the matrix $A = \begin{bmatrix} 8 & 5 \\ 2 & 8 \end{bmatrix}$ to transform it into $\begin{bmatrix} 12 & 21 \\ 2 & 8 \end{bmatrix}$ (a) $R_1 \rightarrow R_1 - 2R_2$ (b) $R_1 \rightarrow 2R_1 + R_2$ (c) $R_1 \rightarrow R_2 + R_1$ (d) $R_1 \rightarrow R_1 + 2R_2$
Q.40	After implementing the following elementary operations on the matrix $A = \begin{bmatrix} 4 & 5 & 2 \\ 6 & 7 & 1 \\ 3 & 9 & 5 \end{bmatrix}, R_1 \rightarrow 2R_1 + 3R_2, R_2 \rightarrow 3R_2 - 2R_3$ Which of the following matrices will be the resulting new matrix? (a) $\begin{bmatrix} 24 & 31 & 7 \\ 12 & 3 & 7 \\ 3 & 9 & 5 \end{bmatrix}$ (b) $\begin{bmatrix} 24 & 31 & 7 \\ 12 & 3 & -7 \\ 3 & 9 & 5 \end{bmatrix}$ (c) $\begin{bmatrix} 24 & 31 & 7 \\ 6 & 7 & 1 \\ 3 & 9 & 5 \end{bmatrix}$ (d) $\begin{bmatrix} 4 & 5 & 2 \\ 6 & 7 & 1 \\ 3 & 9 & 5 \end{bmatrix}$

Q.41 The matrix resulting from the elementary operation $R_2 \rightarrow 2R_2 + 3R_1$ applied to the original matrix

	[2	5	4]				
A =	5	2	6 is				
A =	L7	2	1				
]	2	5	4]		[2	5	4]
(a)	16	19	4 24 1	(b)	19	19	4 24 1
	. 7	2	1		L7	2	1
Г	2	-5	4]		[1	5	4]
(c)	16	19	4 24 1	(d)	16	19	4 24 1
L	. 7	2	1		L7	2	1

Q.42	What is the new matrix after applying the elementary operation $C_1 \rightarrow 4C_1$ to the matrix

$$A = \begin{bmatrix} 5 & 8 \\ -1 & 2 \\ 3 & -4 \end{bmatrix}$$
(a)
$$\begin{bmatrix} 5 & 8 \\ -1 & 2 \\ 3 & -4 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 20 & 8 \\ -4 & 2 \\ 12 & -4 \end{bmatrix}$$
(c)
$$\begin{bmatrix} 20 & 8 \\ 4 & 2 \\ 12 & -4 \end{bmatrix}$$
(d)
$$\begin{bmatrix} 20 & 8 \\ -4 & 2 \\ 12 & 4 \end{bmatrix}$$

Q.43

After applying the following column matrix operations:

$$A = \begin{bmatrix} -7 & 2 & 6 \\ -2 & 3 & -5 \\ 2 & 1 & 3 \end{bmatrix}, C_2 \rightarrow 2C_1 + C_2, C_3 \rightarrow 3C_1 + 2C_3$$

Which of the following matrices will be the resulting new matrix?

[-7 -12 6]	[-7 -12 6]
(a) $2 -1 -5$	(b) $\begin{vmatrix} -2 & -1 & -5 \end{vmatrix}$
(a) $\begin{bmatrix} -7 & -12 & 6\\ 2 & -1 & -5\\ 2 & -5 & 3 \end{bmatrix}$	(b) $\begin{bmatrix} -7 & -12 & 6 \\ -2 & -1 & -5 \\ 2 & 5 & 3 \end{bmatrix}$
[-7 2 6]	[-7 -12 -9]
(c) $\begin{vmatrix} -2 & 3 & -5 \end{vmatrix}$	(d) $\begin{vmatrix} -2 & -1 & -16 \end{vmatrix}$
(c) $\begin{bmatrix} -7 & 2 & 6 \\ -2 & 3 & -5 \\ 2 & 1 & 3 \end{bmatrix}$	(d) $\begin{bmatrix} -7 & -12 & -9 \\ -2 & -1 & -16 \\ 2 & 5 & 12 \end{bmatrix}$

Q.44 Which one of the following column operations is not accurate for the given matrix $A = \begin{bmatrix} 1 & 2 & 5 \\ 6 & 3 & 8 \end{bmatrix}$ (a) $C_1 \rightarrow 3C_1$ (b) $C_2 \rightarrow C_1 + C_2$ (c) $C_2 \rightarrow 2 + 2C_2$ (d) $C_2 \rightarrow 2C_1 + 2C_2 - C_3$

Q.45 For any 2 × 2 matrix A, A(adj A) =
$$\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$
, then |A| equals to
(A) 0 (B) 3 (C) 6 (D) 9

Q.46 If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$
, then the value of adj (adj A) is-
(A) $|A|^2$ (B) - 2A (C) 2A (D) A^2

Q.47 If
$$A = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$$
 and A. adj $A = k \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then the value of k is
(A) $\sin x \cos x$ (B) 1 (C) 2 (D) 3

Q.48 If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$
, then A (adj A) equals-
(A) $\begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$
(B) $-\begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$
(C) $\begin{bmatrix} 0 & 0 & 9 \\ 0 & 9 & 0 \\ 9 & 0 & 0 \end{bmatrix}$
(D) None of these

Q.49	If A and B are square matrices of same or (A) adj A . adj B (C) adj A + adj B	ders, then adj (AB) is equal to. (B) adj B . adj A (D) adj A – adj B
Q.50	If A = $\begin{bmatrix} 1 & -2 & 3 \\ 4 & 0 & -1 \\ -3 & 1 & 5 \end{bmatrix}$, then the value of t A, represented as (adj A) ₂₃ is equal to.	he element in the 2^{nd} row and 3^{rd} column of the adjoint of
	(A) 13 (B) – 13	(C) 5 (D) – 5
Q.51	The inverse matrix of $\begin{bmatrix} 4 & 7 \\ 1 & 2 \end{bmatrix}$ is -	
	(A) $\begin{bmatrix} 2 & -7 \\ -1 & 4 \end{bmatrix}$	$(B)\begin{bmatrix} 2 & -1\\ - & -1\end{bmatrix}$
	$ \begin{array}{c} (C) \begin{bmatrix} -2 & 7 \\ 1 & -4 \end{bmatrix} $	$(B) \begin{bmatrix} 2 & -1 \\ -7 & 4 \end{bmatrix}$ $(D) \begin{bmatrix} -2 & 1 \\ 7 & -4 \end{bmatrix}$
Q.52	Matrix $\begin{bmatrix} \lambda & -1 & 4 \\ -3 & 0 & 1 \\ -1 & 1 & 2 \end{bmatrix}$ is non-invertible where the second	nen
	$\begin{bmatrix} -1 & 1 & 2 \end{bmatrix}$ (A) $\lambda = -15$	(B) $\lambda = -17$
	$(C) \lambda = -16$	(D) $\lambda = -18$
Q.53	If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, then the value of A^{-1} is	-
	$(A) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(B) $\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$
	$(C)\begin{bmatrix} -2 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & -2 \end{bmatrix}$	(D) None of these
Q.54	Which of the following statements is inco	rrect for any square matrix A.
	(A) $(adj A)^{-1} = adj (A^{-1})$	(B) $(A^{T})^{-1} = (A^{-1})^{T}$
	(C) $(A^3)^{-1} = (A^{-1})^3$	(D) None of these
Q.55	If A is an invertible matrix of order 2, then det	
	(a) A (c) 1	$\begin{array}{ll} \text{(b)} & \frac{1}{ A } \\ \text{(d)} & 0 \end{array}$
Q.56	If B is the inverse of matrix A and $A = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 & -1 \\ 1 & -3 \\ 1 & 1 \end{bmatrix} \text{ and } 10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix} \text{ given then fine the}$
	value of α .	
	(a) -2 (c) 2	(b) 1 (d) 5
0.55		
Q.57	If A is a square matrix such that $A^2=I$, then fin (a) 1	(b) 0
	(c) A	(d) I + A

Q.58	If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}$, $6A^{-1} = A^2 + cA + dI$,	then (c, d) is equal to	
	$ \begin{bmatrix} 0 & -2 & 4 \end{bmatrix} $ (a) (-6,11) (c) (11,6)	(b) (-11,6) (d) (6,11)	
Q.59	If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then (a) $-6 - 12 - 18$ (c) $-6, -4, -9$	the values of k, a, b are respective (b) -6,4,9 (d) -6,12,18	ly
Q.60	If $A = \begin{bmatrix} 1 & -2 \\ 3 & 0 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 4 \\ 2 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 0 & -1 & 4 \\ 1 & 0 \end{bmatrix}$ (a) $\begin{bmatrix} 8 & 20 \\ 7 & 9 \end{bmatrix}$ (c) $\begin{bmatrix} -8 & 20 \\ -7 & 9 \end{bmatrix}$	$ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \text{ then } 5A - 3B - 2C = \\ (b) \begin{bmatrix} 8 & -20 \\ 7 & -9 \end{bmatrix} \\ (d) \begin{bmatrix} 8 & 7 \\ -20 & -9 \end{bmatrix} $	
Q.61	If $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ and l is the unit matrix (a) $4A - 3I$ (b) $3A - AI$	of order 2, then A ² equals (c) A – I	(d) A + I
Q.62	If $[m \ n] {m \choose n} = [25]$ and $m < n$ and m, n (a) (2, 3) (b) (3, 4)	$\in I^+$, then (m, n) = (c) (4, 3)	(d) (1, 5)
Q.63	If $A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $B = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$, where $i = \sqrt{-1}$ (a) $A + B = 0$ (c) $A - B = 0$	$\overline{-1}$, then the correct relation is (b) $A^2 = B^2$ (d) $A^2 + B^2 = 0$	
Q.64	If A = $\begin{bmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$, B = $\begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$, the (a) $\begin{bmatrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -1 & 2 & 4 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 & 4 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \end{bmatrix}$	en AB = (b) $\begin{bmatrix} 5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4 \end{bmatrix}$ (d) $\begin{bmatrix} 5 & 9 & 13 \\ -1 & 4 & 2 \\ -2 & 2 & 4 \end{bmatrix}$	
Q.65	Which is true about matrix multiplication (a) It is commutative (c) Both (1) & (2)	? (b) It is associative (d) Neither commutative nor ass	ociative
Q.66	If $P = \begin{pmatrix} i & 0 & -i \\ 0 & -i & i \\ -i & i & 0 \end{pmatrix}$ and $Q = \begin{pmatrix} -i & i \\ 0 & 0 \\ i & -i \end{pmatrix}$ (a) $\begin{pmatrix} -2 & 2 \\ 1 & -1 \\ 1 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} 2 & -2 \\ -1 & 1 \end{pmatrix}$, then PQ is equal to (b) $\begin{pmatrix} 2 & -2 \\ -1 & 1 \\ -1 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
Q.67	Assuming that the sums and products giv for matrices?	ren below are defined, which of the (b) $AB = AC$ does not imply $B = C$	

(a) A + B = B + A(b) AB = AC does not imply B = C(c) AB = 0 implies A = 0 or B = 0(d) (AB)' = B'A

Q.68	The matrix $\begin{bmatrix} 0 & 5 & -7 \\ -5 & 0 & 11 \\ 7 & -11 & 0 \end{bmatrix}$ is known a	S
	(a) Triangular matrix (c) A symmetric matrix	(b) Skew symmetric matrix (d) An idempotent matrix
Q.69	For a matrix A, $AI = A$ and $AA^{T} = I$ is true	then A is necessarily
Q.09	(a) A square matrix	(b) Skew symmetric matrix
	(c) A symmetric matrix	(d) An idempotent matrix
Q.70	A square matrix A = [a _{ij}] in which a _{ij} = 0 for	i ≠ j and a _{ij} = k (where k ∈ R – {0, 1}) for i = j is called a
	(a) Unit matrix	(b) Scalar matrix
	(c) Null matrix	(d) Skew symmetric matrix
Q.71	If A is a square matrix, then which of the	
	(a) $A + A'$	(b) AA'
	(c) A'A	(d) A – A'
Q.72	For any square matrix A, AA^{T} is a	
	(a) Unit matrix	(b) Symmetric matri
	(c) Skew symmetric matrix	(d) Diagonal matrix
Q.73	If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then which of the	e following statements is not correct?
	(a) A is orthogonal matrix (b) A' is orthogonal matrix	
	(b) A' is orthogonal matrix (c) A is symmetric matrix if $\theta = n\pi$, $n \in I$	
	(d) A is skew symmetric matrix for $\theta \in \mathbb{R}$	
Q.74	If A is a skew-symmetric matrix of order	n, and C is a column matrix of order n \times 1, then C ^T AC is
	(a) A identity matrix of order n	(b) A unit matrix of order one
	(c) A zero matrix of order one	(d) A zero matrix of order n
Q.75	Let A be a 5 × 8 matrix, then each colu	nn of A contains
•	(a) 5 elements	
	(c) 40 elements	(d) 13 elements
Q.76	If A is of order m × n and B is of order p	$\mathbf{p} \times \mathbf{q}$, then AB is defined only if
· ·	(a) $m = q$	(b) $m = p$
	(c) $n = p$	(d) $n = q$
0.77	If A + B = $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and A - 2B = $\begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix}$	then A is equal to
Q.77	-1 10	
	(a) $\frac{1}{3} \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$	(b) $\frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$
	(c) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$	$(d)\begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}$
		-
Q.78	If $X + \begin{bmatrix} 2 & 1 \\ 6 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then 'X is equal to	0
	(a) $\begin{bmatrix} 0 & 1 \\ 0 & 6 \end{bmatrix}$	(b) $\begin{bmatrix} 0 & -1 \\ 0 & -6 \end{bmatrix}$
	$(c)\begin{bmatrix} -1 & 0\\ -6 & 0 \end{bmatrix}$	$ \begin{array}{c} (d) \begin{bmatrix} 1 & 0 \\ 6 & 0 \end{bmatrix} $
	$[0]_{L=6}$ 0]	^(u) [6 0]

Q.79	If $\begin{bmatrix} x & 1 \\ -1 & -y \end{bmatrix} + \begin{bmatrix} y & 1 \\ 3 & x \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, then (a) $x = -1, y = 0$ (c) $x = 0, y = 1$	(b) x = 1, y = 0 (d) x = 1, y = 1
Q.80	If A = [ab], B = $[-b - a]$ and C = $\begin{bmatrix} a \\ a \end{bmatrix}$, the (a) A = -B (c) AC = BC	en correct statement is (b) A + B = A - B (d) CA = CB
Q.81	If A is any square matrix, then (a) $A + A^{T}$ is skew symmetric (c) AA^{T} is symmetric	(b) A – A ^T is symmetric (d) AA ^T is skew symmetric
Q.82	Multiplicative inverse of the matrix $\begin{bmatrix} 2 \\ 7 \end{bmatrix}$ (a) $\begin{bmatrix} 4 & -1 \\ -7 & -2 \end{bmatrix}$ (c) $\begin{bmatrix} 4 & -1 \\ 7 & 2 \end{bmatrix}$	$ \begin{array}{c} 1\\4\\ 4 \end{array} is \\ (b) \begin{bmatrix} -4 & -1\\ 7 & -2 \end{bmatrix} \\ (d) \begin{bmatrix} 4 & -1\\ -7 & 2 \end{bmatrix} \end{array} $
Q.83	$\begin{bmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} + 2 \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ is equal to (a) $\begin{bmatrix} 45 \\ 44 \end{bmatrix}$ (c) $\begin{bmatrix} 44 \\ 43 \end{bmatrix}$	(b) $\begin{bmatrix} 43\\45 \end{bmatrix}$ (d) $\begin{bmatrix} 43\\50 \end{bmatrix}$
Q.84	If A = $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, then (a) A ² = 0 (c) A ³ = A	(b) $A^2 = A$ (d) $A^2 = 2A$
Q.85	If A = $\begin{bmatrix} 1 & 2 & 3 \\ -2 & 5 & 7 \end{bmatrix}$ and 2A - 3B = $\begin{bmatrix} 4 & 5 \\ 1 & 2 \end{bmatrix}$ (a) $\frac{1}{3} \begin{bmatrix} -2 & -1 & 15 \\ 5 & 8 & -11 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & -1 & 15 \\ 5 & 8 & 11 \end{bmatrix}$	$\begin{bmatrix} 5 & -9 \\ 2 & 3 \end{bmatrix}$, then B is equal to (b) $\begin{bmatrix} 2 & 1 & -15 \\ 5 & -8 & -11 \end{bmatrix}$ (d) $-\frac{1}{3} \begin{bmatrix} 2 & 1 & -15 \\ 5 & -8 & -11 \end{bmatrix}$
Q.86	Let A = $\begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 2 \\ 3 & 4 & 5 \end{bmatrix}$ and A + B - 4I = 0, t (a) $\begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & -2 \\ -3 & -4 & -1 \end{bmatrix}$ (c) $\frac{1}{4} \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & -2 \\ -3 & -4 & -1 \end{bmatrix}$	Then B is equal to (b) $\begin{bmatrix} 2 & 3 & 5 \\ 1 & -4 & 2 \\ 3 & 4 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 3 & 5 \\ -1 & 4 & -2 \\ 3 & 4 & 1 \end{bmatrix}$
Q.87	If for a 2 × 2 matrix A, A ² + I ₂ = 0, where (a) $\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2\\ -1 & 1 \end{bmatrix}$	e I ₂ is the identity matrix, then A equals (b) $\begin{bmatrix} i & 0\\ 0 & -i \end{bmatrix}$ (d) $\begin{bmatrix} -1 & 0\\ 0 & -1 \end{bmatrix}$

Q.88	If $f(x) = x^2 + 4x - 5$ and $A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$, then	f(A) is equal to
		$\begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$
	-0 0 -	$ \begin{bmatrix} 2 & 0 \\ 8 & 4 \\ 8 & 0 \end{bmatrix} $
Q.89	$\cos\theta \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}$	is equal to
	$\begin{array}{c} 1 \\ (a) \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \qquad (b)$	
	÷ =	$) - \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
Q.90	If A is a square matrix, then A is symmetric, i	
		$ A^{2} = 1 A^{T} = -A $
Q.91	If A is a square matrix, then A is skew symmetry (a) $A^2 = A$ (b)	hetric iff $A^2 = I$
	,,,	$\int A^{\mathrm{T}} = -A$
Q.92	Consider the matrix A = $\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$	
	STATEMENT-1 : A is idempotent. And	
	STATEMENT-2 : If $A2 = A$, then A is called ide	empotent.
	(b)Statement-1 is True, Statement-2 is True;	Statement-2 is a correct explanation for Statement-1 Statement-2 is NOT a correct explanation for
	Statement-1 (c) Statement-1 is True, Statement-2 is False	
	(d) Statement-1 is False, Statement-2 is True	
Q.93	STATEMENT-1 : The square matrix, whose e	_
	STATEMENT-2 : A square matrix $A = [a_{ij}]_{n \times 1}$ diagonal are all zero, i.e. $a_{ij} = 0$ for all $i \neq j$, is	n, whose elements above and below the principal called a diagonal matrix.
	(a) Statement-1 is True, Statement-2 is True;	Statement-2 is a correct explanation for Statement-1
	(b) Statement-1 is True, Statement-2 is True; Statement-1	Statement-2 is NOT a correct explanation for
	(c) Statement-1 is True, Statement-2 is False	
	(d) Statement-1 is False, Statement-2 is True	
Q.94	STATEMENT-1: Inverse of A = $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7 \end{bmatrix}$ d	loes not exist.
	And	
	STATEMENT-2 : The matrix A is singular.	

- - (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-
 - (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
 - (c) Statement-1 is True, Statement-2 is False
 - (d) Statement-1 is False, Statement-2 is True

Q.95	A = $\begin{bmatrix} 2 & -3 & 4 \end{bmatrix}$, B = $\begin{bmatrix} 0 & 2 & 3 \end{bmatrix}$, C = $\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ (A + B) \cdot (C + D) is equal to (a) $\begin{bmatrix} 40 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$	and $D = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$ then answer the question number 95 to 99. (b) [41] (d) [36]
Q.96	The matrix CA is equal to (a) $\begin{bmatrix} -9 & 12 & 6 \\ -6 & 8 & 4 \\ -3 & 4 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 6 & -9 & 12 \\ 4 & -6 & 8 \\ 2 & -3 & 4 \end{bmatrix}$	(b) $\begin{bmatrix} 6 & 12 & -9 \\ 4 & 8 & -6 \\ 2 & 4 & -3 \end{bmatrix}$ (d) $\begin{bmatrix} -9 & 6 & 12 \\ -6 & 4 & 8 \\ -3 & 2 & 4 \end{bmatrix}$
Q.97	The matrix (A − B) · (C + D) is equal to (a) [5] (c) −15]	(b) [15] (d) [-5]
Q.98	The matrix trace of matrix D. B is equal	to
•	(a) 12	(b) 16
	(c) 20	(d) 28
Q.99	The order of matrix (2A + 5B). (7C - 8D) (a) 1 × 1 (c) 3 × 3) is equal to (b) 2 × 2 (d) 4 × 4
Q.100	The number of all possible matrices of or (a) 32 (c) 6	rder 2 × 3 with each entry 1 or -1 is (b) 12 (d) 64

6

217 21

- Q.1 If A is a 2 × 3, matrix and B is a 3×5 matrix, then what is the order of matrix (AB) or (AB)^t?
- **Q.2** What are the potential orders of a matrix that contains 6 elements?
- **Q.3** Demonstrate that the matrix $A = A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ is idempotent.
- **Q.4** Demonstrate that the matrix $A = A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ is involuntary.

Q.5 Find the values of a, b, c, x, y, z if
$$\begin{bmatrix} x+3 & 2+4 & 2y-7 \\ -6 & a-1 & 0 \\ b-3 & -21 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 3y-2 \\ -6 & -3 & 2c+2 \\ 2b+4 & -21 & 0 \end{bmatrix}$$

Q.6 Suppose
$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{bmatrix}$ & $C = \begin{bmatrix} 1 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0 \end{bmatrix}$ are matrices then,

Prove that the cancellation law does not hold in matrix multiplication.

Q.7 Given matrices A and B such that
$$A + B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
, $A - B = \begin{bmatrix} 3 & 2 \\ -2 & 0 \end{bmatrix}$ find the product AB.

Q.8 If
$$f(x) = x^2 - 3x + 3$$
 and $A = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$ is a square matrix then demonstrate that

f(A) = 0. Consequently determine A^4 .

Q.9 The expression
$$\begin{bmatrix} 1 & -\tan\frac{\theta}{2} \\ \tan\frac{\theta}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}^{-1}$$
 is equal to What?

Q.10 If
$$A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$$
 is a matrix such that $2A + 3X = 5B$ where $B = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$ is another matrix, find the matrix X

Q.11 Given
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
, demonstrate that $A^3 - 23A - 40I = 0$

- **Q.12** For matrices A and B, where A is of order m × n and B is of order n × n =, determine which of the following matrix products are defined:
- **Q.13** Given $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$ and $A^2 + kI = 8A$, determine the value of k.
- **Q.14** If matrices A,B,C have dimensions 1 × 3, 3 × 3 and 3 × 1 respectively, what will be the dimensions of the matrix product ABC ?
- **Q.15** Demonstrate that if A is non-singular matrix and A is symmetric then A^{-1} is also symmetric.

ANSWER KEI – LEVEL – I										
Q.	1	2	3	4	5	6	7	8	9	10
Ans.	В	А	D	A	D	В	D	С	C	В
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	A	D	D	D	С	C	D	D	D	С
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	A	А	А	С	A	D	С	D	В	В
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	D	В	D	D	С	В	В	D	D	В
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	A	В	D	С	В	В	В	В	В	А
Q.	51	52	53	54	55	56	57	58	59	60
Ans.	В	В	В	D	В	D	С	А	C	В
Q.	61	62	63	64	65	66	67	68	69	70
Ans.	A	В	В	В	В	В	С	В	A	В
Q.	71	72	73	74	75	76	77	78	79	80
Ans.	D	В	D	С	A	С	А	С	В	С
Q.	81	82	83	84	85	86	87	88	89	90
Ans.	С	D	D	A	D	A	В	D	В	С
Q.	91	92	93	94	95	96	97	98	99	100
Ans.	D	А	А	А	В	С	D	С	А	D

ANSWER KEY – LEVEL – I