

Q.1	Among the given sets, t	the set with th	le greatest r	ange is:			
U -	(a) 17, 32, 24, 18, 35		8		5, 34, 36, 27		
	(c) 22, 15, 8, 19, 16				ł, 13, 9, 17		
Q.2	If the range of two data	sets, a, 5, 9 a	nd 4, 7, b, is	8, determin	e the range	of the data s	et a, 4, 5, 7, 9,
	b, where a is its minim	um value and	b is its max	imum value.			
	(a) 25	(b) 13		(c) 22		(d) 11	
Q.3	If the minimum passin passed the exam is 55,	80, m, 66, 79,		value of m if		f the provide	
	(a) 49	(b) 91		(c) 52		(d) 86	
Q.4	If the range of the data set containing the values 9, 18, 4, 20, and x is values for x ?						the potential
	(a) 3 or 21	(b) 7 or 23		(c) -2 or		(d) 3 or	13
Q.5	The range of the set co		alues 35, 2		and 32 is:	(1) O=	
	(a) 23	(b) 25		(c) 10		(d) 35	
Q.6	The mean deviation of	the numbers 1	11, 12, 13, 1	4, 15 with re	espect to the	eir mean is	
	(a) 1	(b) 1.2		(c) 1.5		(d) 2	
Q.7	The mean deviation for	'n' observatio	ns, denoted			eir mean, \overline{x} , is	s calculated as
	(a) $\sum_{i=1}^{n} (x_i - \overline{x})$			(b) $\frac{1}{n}\sum_{i=1}^{n}$	$ \mathbf{x_i} - \overline{\mathbf{x}} $		
	(c) $\sum_{i=1}^{n} (x_i - \overline{x})^2$			$(d)^{\frac{1}{n}}\sum_{i=1}^{n}$	$(x_i - \overline{x})^2$		
Q.8	The mean deviation are	ound the mean	n for the giv	en data is:	1		
			20 22	25 27	٦		
		_	20 22	25 27	4		
		f_1	3 8	6 3			
	(a) 4.283	(b) 3.463		(c) 5.762		(d) 2.08	5
Q.9	The mean deviation are	ound the mean	n for the giv	en data is:			
	Class	100-120	120-140	140-160	160-180	180-200]
	Frequency	2	1	3	2	2	1
	(a) 25	(b) 22.4	1	(c) 31.5		(d) 41	1
Q.10	The mean of five obser	vations, 1, 2, 6	, x, and y, is	4.4. Therefo	re, the sum	of x and y is	
	(a) 4	(b) 9		(c) 15		(d) 13	
Q.11	The variance for the given	ven data is: 6,	7,8,12,13,15	5			
	(a) 12.05	(b) 11.14		(c) 14.08		(d) 12.1	
Q.12	Consider observations a value, the standard dev						-
	(a) $m + k$	(b) $s + k$		(c) s		(d) ks	•
Q.13	Consider "n" observati	ons denoted a	ıs x ₁ , x ₂ ,,	x_n , with the	ir arithmetio	c mean \overline{x} . Th	e formula for
	the standard deviation	is expressed a	as:				

(b) $\frac{\sum (x_i - \overline{x})^2}{n}$

(a) $\sum (x_i - \overline{x})^2$

(c) $\sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$

(d) $\sqrt{\frac{\sum x_i^2}{n} + \overline{x}^2}$

Q.14	-	uares of all 100 obse	ervations, gi	ven that thei	r mean is 5	0 and standard de	viation
	is 5, is: (a) 5000000	(b) 250000		(c) 252500	1	(d) 255000	
Q.15	` '	tions x_1, x_2, x_3, x_4, x_5	with a mea	` '		` '	andard
Q.15		oservations kx_1, kx_2			andara ac	ration of 3. The 3th	maara
	(a) $k + s$	(b) $\frac{s}{k}$		(c) ks		(d) s	
Q.16	The standard devi	iation of the first 10	natural nur	nbers is:			
	(a) 2.87	(b) 3.25		(c) 6.35		(d) 5.5	
Q.17	The standard dev	viation for the data	set 2, 4, 5	, 6, 8, 17 is	23.33. Cor	sequently, the sta	ındard
	deviation for the d	lata set 4, 8, 10, 12,	16, 34 will ł	oe:			
	(a) 23.23	(b) 25.23		(c) 46.66		(d) 48.66	
Q.18	Given that the sta	ndard deviation of	the number	rs 2, 3, 2x, an	d 11 is 3.5	determine the po	tential
	values for x.						
	(a) 2	(b) 5		(c) 3		(d) 4	
Q.19	If the standard de	viation of temperatu	ıre data in d	legrees °C is	5, converti	ng the data to °F w	ith the
	given relationship	$\int_{0}^{\infty} [given C = \frac{5}{9} (F wc)]$	ould result i	n a variance	of.		
	(a) 81	(b) 57		(c) 36		(d) 25	
Q.20		and $\sum x_i^2 = 1530$ the	n co-efficier		ı is	(1) = 1	
Q -= 3	(a) 36%	(b) 41%		(c) 25%		(d) 38%	
Q.21	• •	ndard deviation of 5	50 observat	` '	nd 10.later	` '	o omit
·		hich was incorrect					
	remaining 49 obs		•				
	(a) 7	(b) 7.21		(c) 6.5		(d) 8	
Q.22	Coefficient of var	iation of two distr	ibution are	15 and 20	and their	measure are 20 a	ınd 10
	respectively. If the	eir standard deviatio	on are σ_1 an	d σ_2 then			
	(a) $3\sigma_1 = 2\sigma_2$	(b) $\sigma_1 < \sigma_2$		(c) $2\sigma_1 = 3$	$3\sigma_2$	(d) $\sigma_1 = 10\sigma_2$	
Q.23	The deviation from	n the median's mea	n is.				
	(a) Equal to that n	neasured from any a	another valu	ıe			
	(b) Maximum if al	l observations are p	ositive				
	(c) Greater than the	hat measured from a	any other va	alue			
		measured from any					
Q.24	When tested, the l	ines (in hours) of 5			ows:		
		1357, 10	090, 1666, 1				
	(a) 178	(b) 179		(c) 220		(d) 356	
Q.25		on about the median	for the foll	_	s: 7,5,4,3,4,		
	(a) 5.04	(b) 5.18	0 . 1	(c) 6.02	= 0	(d) 4.32	
Q.26	_	marks obtained by		a mathemat	ics test 50,	59,20,33,53,39,40,	6559
		n from the median i	S.	() 10 (7		(1) 1476	
0.27	(a) 9	(b) 10.5	ftl:	(c) 12.67		(d) 14.76	
Q.27	The mean deviation	on around the media	an for the gi	ven data is:			
		x ₁ 3 4	5 6	7 8	9		
		f ₁ 4 3	2 1	4 5	1		
	() 2 ((1) 4.05	1	() 2.26		(1) 2 24	
0.00	(a) 2.6	(b) 1.85	c .1 .	(c) 3.26		(d) 2.31	
Q.28	i ne mean deviatio	on around the media	an for the gi	ven data is:			
	Class	0-10	10-20	20-30	30-40	40-50	
	Frequen	cy 2	1	3	2	2	
	(a) 11.12	(b) 15.06		(c) 19.6		(d) 13.52	

Q.29	The mean of seven observed of the remaining observed		observations are 2, 6, 8, 10), 12, 18, then the value
	(a) 18	(b) 21	(c) 14	(d) 16
Q.30		set 10, 21, 5, 6, 4, 12, 14,		(1) 10
	(a) 16 \times	(b) 8 ∇^{10}	(c) 4	(d) 10
Q.31		$\sum_{i=1}^{10} x_i^2 = 360 \text{ then } \sum_{i=1}^{10} x_i^3$	is	
	(a) 2160	(b) 3250	(c) 3360	(d) 3160
Q.32			rd deviation of the data is	
0.00	(a) 16	(b) 18	(c) 17	(d) 19
Q.33	r—	of the data 6,5,9,13,12, 8,1		
	(a) $\sqrt{\frac{52}{7}}$	(b) $\sqrt{6}$	(c) $\frac{52}{7}$	(d) 6
Q.34	Take the initial 10 positive	ve integers. If we multiply	each number by -1 and th	en add 1 to each result,
	the variance of the obtai	ned numbers is.		
	(a) 8.25	(b) 3.62	(c) 2.25	(d) 3.15
Q.35			$= 18000$, $\Sigma x = 960$. The v	
	(a) 6.63	(b) 16	(c) 22	(d) 44
Q.36	The variance of a set o variance of the resulting		f each observation is mul	ltiplied by 2, then the
	(a) 10	(b) 20	(c) 25	(d) 12.5
Q.37		` '	the standard deviation of	
Q.S.		2		_
	(a) aσ	(b) $\frac{d}{c}\sigma$	$(c)\frac{c}{a}\sigma$	$(d)\frac{a\sigma+b}{c}$
Q.38	4	nce and o represents the s		_
	(a) $v = \frac{1}{\sigma^2}$	(b) $v = \frac{1}{\sigma}$	(c) $v = \sigma^2$	(d) $v^2 = \sigma$
Q.39			ations is 8, and each obser	vation is divided by 2,
		f the new set of observati		4.11
0.40	(a) 4	(b) 8	(c) -4	(d) -8
Q.40			s 50 and 60, with arithmet	tic means of 30 and 25,
	-	nce between their standa		(d) 0
Q.41	(a) 2.5	(b) 1	(c) 1.5 s are 5 and 7, respectively	` '
Q.11			he remaining two observa	
	(a) 8 and 6	(b) 9 and 4	(c) 7 and 9	(d) 8 and 9
Q.42.	• •	` '	is 25 and 30, and their st	` '
•		ly. The sum of their arithr		
	(a) 3080	(b) 4020	(c) 4680	(d) 5650
Q.43	If the coefficient of varia	tion for two distributions	s is 60% and 75% , and the	eir standard deviations
	are 45 and 40, respective	ely, then the ratio of their	arithmetic means is.	
	(a) 45: 32	(b) 9: 10	(c) 7:8	(d) 7: 10
Q.44	If two distributions shar			
	` '	n lesser S.D. is more consi		
	• •	h lesser S.D. is less consist		1 1
	(c) Their C.V.'s will also	_	(d) Their S.D.'s will also	_
Q.45	·	• •	10, $\sum_{i=1}^{20} b_i^2 = 1000$ where	e a _i , b _i denote length
	_	ation respectively. Then v		
	(a) Length		(b) Weight	
0.46	(c) Both have equal C.V.		(d) None of these	ologio de CEO
Q.46			one observation while calc	ulating the mean of 50
	_	n a calculated mean of 4.0		(d) 4
	(a) 4.08	(b) 3.95	(c) 4.01	(d) 4

Q.1 Determine the mean deviation from the mean for the given data.

13,17,16,14,11,13,10,16,11,18,12,17

Q.2 Calculate the mean deviation from the mean for the provided data.

Xi	5	7	9	10	12	15
fi	8	6	2	2	2	6

Q.3 Determine the mean deviation from the mean for the given dataset.

Marks	0-10	10-20	20-30	30-40	40-50	50-60
No. of Girls	6	8	14	16	4	2

Q4 Calculate the mean deviation from the median for the given data.

38, 70, 48, 34, 63, 42, 55, 44, 53, 47

Q.5 Determine the mean deviation from the median for the provided data.

Income Per Day	No. of Person
0 - 100	4
100 - 200	8
200 - 300	9
300 - 400	10
400 – 500	7
500 - 600	5
600 - 700	4

Q.6 The measurements (in centimeters) of 10 rods in a store are as follows:

42.2, 52.3, 55.2, 72.9, 52.8,79.0, 32.5, 15.2, 27.9, 30.2

1. Find M.D. (Med)

2. Find M.D. (Mean)

Q.7 Determine the variance and standard deviation for the given data:

- **1.** 65, 58, 68, 44, 48, 45, 60, 62, 60, 50.
- **2.** 48, 80, 58, 44, 52, 65, 73, 56, 64, 54
- **3.** 28, 60, 38, 24, 32, 45, 53, 36, 44, 34.
- Q.8 A set of 25 variates has a mean of 40 and a standard deviation of 5, while a second set of 35 variates has a mean of 45 and a standard deviation of 2. Calculate the combined mean and standard deviation for the two sets of variates taken together.
- **Q.9** Compute the standard deviation for the given distribution:

Class-Interval	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90
Frequency	3	1	1	8	17	38	9	3

Q.10 In a patient study, the following data is collected. Determine the arithmetic mean and the standard deviation of the data:

Age (in years)	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89
No. of cases	1	0	1	10	17	38	9	3

Q.11 Compute the mean and variance for the given distribution:

Classes	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45
Frequency	20	24	32	28	20	11	26	15	24

Q.12 The coefficient of variation for two distributions is 60 and 70, and their respective standard deviations are 21 and 16. Determine their arithmetic means.

Q.13 Compute the coefficient of variation for the given data.

Income (Rs.)	10001700	1700-2400	2400-3100	3100-3800	3800-4500	4500-5200
No. of families	12	18	20	25	35	10

Q.14 Based on the share prices of X and Y provided below, determine which one exhibits greater stability in value:

X	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

- Q.15 Determine the mean deviation about the mean for the given data: 7, 4, 19, 36, 24, 28, 6, 2, 19, 11
- **Q.16** Calculate the mean deviation about the median for the provided data: 1, 4, 8, 15, 12, 36, 5, 14
- Q.17 Find the mean deviation about the median for the following data set: 12, 10, 8, 9, 24, 21, 6, 33, 15
- **Q.18** Find the mean deviation about the mean for the following dataset: [data not provided]

x ₁	11	12	13	14	15	16
f ₁	6	8	12	8	16	10

Q.19 Calculate the mean deviation about the median for the given data.

X ₁	3	4	5	6	7
f ₁	2	4	6	8	5

Q.20 Determine the mean deviation about the median for the provided dataset.

x ₁	4	6	7	12	15	16	20	22
f ₁	2	3	4	6	3	5	4	3

Q.21 Calculate the mean deviation about the mean for the given dataset.

Marks obtained	10-20	20-30	30-40	40-50	50-60
No. of Student	4	5	6	3	2

Q.22 Calculate the mean deviation using the step-deviation method:

Class	0-5	5-10	10-15	15-20	20-25
Frequency	3	1	3	1	2

Q.23 Determine the mean deviation about the median for the given dataset.

Height (in cm)	70-75	75-80	80-85	85-90	90-38
No. Of Boys	9	6	13	8	4

Q.24 Calculate the variance and standard deviation for the following set of numbers: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29.

Q.25 Determine the variance and standard deviation for the given dataset.

x ₁	4	8	11	17	20	24	32
f ₁	3	5	9	5	4	3	1

Q.26 Compute the mean, variance, and standard deviation for the given distribution:

Class	30-40	40-50	50-60	60-70	70-80	80-90	90-100
Frequency	3	7	12	15	8	3	2

Q.27 Determine the standard deviation for the following:

x ₁	3	8	13	18	23
f ₁	7	10	15	10	6

Q.28 The coefficient of variation for two distributions is 60 and 45, with corresponding standard deviations of 24 and 15, respectively. What are the arithmetic means of these distributions?

Q.29 The stock prices (in ₹) of two companies, X and Y, over a 10-week period are provided. Determine which company's shares exhibit greater stability.

X	35	54	52	54	56	58	53	50	52	49
Y	108	106	105	105	108	107	104	103	104	104

Q.30 Considering the provided data below, identify the group that displays higher variability.

Marks	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Group A	8	15	32	28	41	12	9
Group B	10	20	30	26	42	5	7

Q..31 Given a set of 5 observations with a mean of 12 and a standard deviation of $\sqrt{6}$, if three specific observations are 11, 12, and 14, determine the remaining two observations.

Q.32 If the standard deviation of a set of six observations is 14, and each observation is increased by 5, calculate the new standard deviation.

Q.33 The standard deviation of a set of 10 observations is 12. If each observation is multiplied by 5, determine the new standard deviation.

Q.34 A student calculated the mean and variance of 7 observations as 9 and 34, respectively. However, the student mistakenly recorded one observation as 21 instead of 14. Determine the correct mean and standard deviation.

ANSWER KEY - LEVEL - I

Q.	1	2	3	4	5	6	7	8	9	10
Ans.	a	d	d	a	b	b	b	d	b	d
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	b	С	С	С	С	a	С	С	a	С
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	b	С	d	a	b	С	b	a	b	b
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	a	d	a	a	d	b	b	С	a	d
Q.	41	42	43	44	45	46				
Ans.	С	h	а	а	а	d				

ANSWER KEY - LEVEL - II

- **1.** 2.33
- **2.** 3.39
- **3.** 10.35
- **4.** 8.4
- **5.** 157.92
- **6. 1.** 16.44 **2.** 16.44
- **7. 1.** 66.2 **2.** 10.61 **3.** 112.64
- **8.** 42.917, 4.34 nearly
- **9.** 1.4
- **10.** 60.7, 11.28
- **11.** 21.5, 164.75
- **12.** 22.85
- **13.** 32.0870
- **14.** Y
- **15.** 9.6
- **16.** 7.375
- **17.** 6.67
- **18.** 1.389
- **19.** 1
- **20.** 4.83
- **21.** 10.3
- **22.** 6.2
- **23.** 5.14
- **24.** Variance = 18.67

Standard deviation = 4.32

- **25.** $\sigma^2 = 45.8$
 - $\sigma = 6.77$
- **26.** $\overline{x} = 62$
 - $\sigma^2 = 201$
 - $\sigma = 14.18$
- **27.** $\sigma = 6.122$
- **28.** $\overline{x}_1 = 40, \overline{x}_2 = 33.33$

- **29.** Y is more stable (as C.V. is less)
- **30.** B is more variable (as C.V. is higher)
- **31.** 15 and 8
- **32.** $\sigma = 14$
- **33.** $\sigma = 60$
- $34. \quad \overline{x} = 8$
 - $\sigma = 4$