

Q.1	If α and β denote the eccentric angles corresponding to the endpoints of a focal chord of an ellipse,						
	ain a Lain O						
	(a) $\frac{\cos \alpha + \cos \beta}{\cos(\alpha - \beta)}$	(b) $\frac{\sin(\alpha-\beta)}{\sin\alpha-\sin\beta}$	(c) $\frac{\cos \alpha - \cos \beta}{\cos(\alpha - \beta)}$	(d) $\frac{\sin \alpha + \sin \beta}{\sin(\alpha + \beta)}$			
Q.2	Midpoints of chords drav	wn through the positive e	nd of the minor axis of an	ellipse lie on.			
	(a) A circle	(b) A parabola	(c) An ellipse	(d) A hyperbola			
Q.3	If P(θ) and Q($\frac{\pi}{2} + \theta$) are	two points on the ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ the focus of mi	focus of midpoint of PQ is.			
	(a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{1}{2}$	(b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 4$	(c) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$	(d) $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 4$			
Q.4	AB is diameter of, $x^2 + 9y^2 = 25$. The eccentric angel of A is $\frac{\pi}{6}$ then the acentric angel of B is						
	(a) $\frac{5\pi}{6}$	(b) $\frac{-5\pi}{6}$	$(c)\frac{-2\pi}{3}$	(d) $\frac{\pi}{3}$			
Q.5	In the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1;$	y = x and $3y + 2x = 0$ ar	e a pair of conjugate diam	eter. Then the acentric			
	of the ellipse is.						
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	(C) $\frac{1}{\sqrt{3}}$	(d) $\frac{2}{\sqrt{3}}$			
Q.6	If the polar with respect	to $y^2 = 4ax$ touches the e	ellipse $\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$ the locu	s of its pole is.			
	(a) $\frac{x^2}{\alpha^2} - \frac{y^2}{(\frac{4a^2\alpha^2}{\beta^2})} = 1$	(b) $\frac{x^2}{\alpha^2} + \frac{\beta^2 y^2}{4a^2} = 1$	(c) $\alpha^2 x^2 + \beta^2 y^2 = 1$	(d) $\alpha^2 x^2 - \beta^2 y^2 = 1$			
Q.7	The equation of the hyperbola with directrix $2x + y = 1$). corresponding focus at (1, 2), a						
	eccentricity $\sqrt{3}$ is given by.						
	(a) $7x^2 + 12xy - 2y^2 - 2x + 14y - 22 = 0$ (b) $2x^2 + 12xy - 7y^2 - 2x - 2x - 2x + 12xy - 2x -$						
	(c) $7x^2 - 12xy + 2y^2 - 2$	2x + 14y - 22 = 0	(d) $7x^2 + 12xy - 2y^2 - 2y^$	2x - 14y - 22 = 0			
Q.8	In the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide then the value						
	b ² equals						
0.0	(a) 9	(b) 6	(c) 8	(d) 7			
Q.9	For the x ⁻ sec ² α – y ² cosec ² α = 1 which of the following remain constant with the change of (a) Abscissa of vortices						
	(c) Eccentricity		(d) Directrices				
0.10	The locus of a point of th	e from $(e^{t} + e^{-t}, e^{t} - e^{-t})$), is				
·	(a) $x^2 - y^2 = 2$	(b) $x^2 - y^2 = 1$	(c) $x^2 + y^2 = 1$	(d) $x^2 - y^2 = 4$			
Q.11	The equation $2x^2 + 3y^2 - 8x - 18y + 35 = k$ represents.						
	(a) No locus if k = 0		(b) An ellipse if k < 0				
0.40	(c) A point if $k = 0$		(d) A hyperbola if $k > 0$	2 . 12 .			
Q.12	If e and e' are the eccentricities of a hyperbola and its conjugate, then the expression $e^2 + e'^2$ is						
	(a) $4e^2e'^2$	(h) 2ee'	(c) $e^{2}e^{2}$	(d) ee'			
0.13	If the eccentricity of a hy	perbola is $\sqrt{3}$, then the eq	centricity of its conjugate	hyperbola is.			
L	() <u>(</u>		$\sqrt{3}$				
	(a) √2	(b) √3	(c) $\sqrt{\frac{2}{2}}$	(d) 2√3			
Q.14	If the separation between $\frac{1}{2}$	n the foci and the separat	ion between the directrice	es of the hyperbola are			
	$\frac{x}{a^2} - \frac{y}{b^2} = 1$ are in the ration 3: 2, then a: b is						
	(a) $\sqrt{2}$: 1	(b) $\sqrt{3}:\sqrt{2}$	(c) 1:2	(d) 2:1			

Q.15	Let PQ be a latus rectum of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and 0 be the center. If \triangle OPQ is an equilateral griangle and e eccentric of the hyperbola. Then.						
	(a) $e = \frac{3}{2}$	(b) e = 2	(c) $e = \frac{1 + \sqrt{13}}{2\sqrt{3}}$	(d) e = 3			
Q.16	The line $5x + 12y + 9 =$	0 is tangent to the hyper	bola $x^2 - 9y^2 = 9$ at the p	ooint.			
-	(a) $(-5, \frac{4}{3})$	(b) $(-5, \frac{-4}{3})$	(c) $(-3, \frac{1}{2})$	(d) $(5, -\frac{17}{6})$			
Q.17	If the tangent at the point (2 sec θ , 3 tan θ) of the hyperbola $\frac{x^2}{4} - \frac{y^2}{2} = 1$ is parallel to						
	3x - y + 4 = 0, then the	e value of 0 is	Ţ				
	(a) 30°	(b) 60°	(c) 90°	(d) 45°			
Q.18	The equation of a tangent to the hyperbola, $16x^2 - 25y^2 - 96x + 100y - 356 = 0$, forming a angle $\frac{\pi}{4}$ with the transverse axis, is given by:						
	(a) $y = x + 2$	(b) $y = x + 4$	(c) $x = y + 3$	(d) $x + y + 2 = 0$			
Q.19	The path followed by a	point P (α , β) as it moves,	subject to the condition t	that the line $y = ax + \beta$			
	is a tangent to the hyperbola, is called the locus, $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$, is						
	(a) A hyperbola	(b) A parabola	(c) A circle	(d) An ellipse			
Q.20	If $x = 9$ represents the	chord of contact for the	hyperbola $x^2 - y^2 = 9$, th	en the equation of the			
	corresponding pair of ta	ingents is.					
	(a) $9x^2 - 8y^2 + 18x - 9$	$\theta = 0$	(b) $9x^2 - 8y^2 - 18x + 9$	$\theta = 0$			
	(c) $9x^2 - 8y^2 - 18x - 9$	$\theta = 0$	(d) $8x^2 - 9y^2 + 18x + 9$	$\theta = 0$			
Q.21	The equation of the hyp	perbola with asymptotes	given by the straight line	4x + 7 = 0 and			
	4x + 3y + 1 = 0, and pa	ssing through the origin, i	S:	<u>.</u>			
	(a) $12x^2 - 7xy - 12y^2 - 6x^2 + 12x^2 - 7xy - 12y^2 - 12y^2$	+ 31x + 17y = 0	(b) $12x^2 - 7xy + 2y^2 =$	0			
0.00	(c) $12x^2 + 7xy + 12y^2 - 10x^2 + 10$	$-31x + 1/y = 0 (d) 12x^2 + 7xy - 2y^2 = 0$					
Q.22	If the line $ax + by + c =$	0 serves as a normal to th	the curve $xy = 2$, then				
	(a) $a > 0, b > 0$	h > 0	(D) $a < 0, D < 0$ (d) Can't he determined				
0.22	(C) a > 0, D < 0.01 a < C	$J, U \geq 0$	(u) call t be determined	$a + a + b + a + a + a^2$			
Q.23	If the normal at a point on the curve at a certain point is $(ct, -)$ if the normal at a point on the curve $xy = c$						
	intersects the curve aga	in at t, then -1	1	(1) (2) −1			
	(a) $t' = -\frac{1}{t^3}$	(b) $t' = \frac{1}{t}$	(c) $t' = \frac{1}{t^2}$	(d) $t'^2 = \frac{1}{t^2}$			
Q.24	The asymptotes of the c	urve xy = hx + ky are					
	(a) x = h, y = k	(b) $x = -h, y = -k$	(c) $\mathbf{x} = \mathbf{k}, \mathbf{y} = \mathbf{h}$	(d) x = -k, y = -h			
Q.25	The result of multiplyin	g the perpendicular dista	nces drawn from any poir	it on a hyperbola to its			
	asymptotes is.	ah	a ² b ²	$a^2 + b^2$			
	(a) $\frac{ab}{\sqrt{a}+\sqrt{b}}$	(b) $\frac{ab}{a^2+b^2}$	$(C) \frac{a}{a^2+b^2}$	$(d) \frac{a^{4} + b}{a^{2}b^{2}}$			
Q.26	If PN represents the per	pendicular from a point o	on a rectangular hyperbola	a to its asymptotes, the			
	locus of the mid-point o	f PN is					
	(a) Circle	(b) Parabola	(c) Ellipse	(d) Hyperbola			
Q.27	The point where the tan	gents at t1 and t2 intersec	t on the hyperbola $xy = c^2$	is.			
	(a) $\left(\frac{ct_1t_2}{t_1+t_2}, \frac{c}{t_1+t_2}\right)$	(b) $\left(\frac{2ct_1t_2}{t_1+t_2}, \frac{2c}{t_1+t_2}\right)$	(c) $\left(\frac{t_1t_2}{c(t_1+t_2)}, \frac{t_1+t_2}{c}\right)$	(d) (ct_1, ct_2)			
Q.28	For a rectangular hyperbola with center C intersected by any circle of radius r at four points P, (
	R, S, and the sum $CP^2 + CQ^2 + CR^2 + CS^2$ is equivalent to						
	(a) r^2	(b) $2r^2$	(c) 3r ²	(d) $4r^2$			
Q.29	The equation of the cho	ord connecting two points	(x, y_1) and $(x_2, y_2$ on the	rectangular hyperbola			
	$xy = c^2$ is.						
	(a) $\frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 1$		(b) $\frac{x}{x_1 - x_2} + \frac{y}{y_1 - y_2} = 1$				
	(c) $\frac{x}{x} + \frac{y}{y} = 1$		(d) $\frac{x}{x} + \frac{y}{y} = 1$				
0 30	$y_1+y_2 = x_1+x_2$ The equation for the common tangent to the curves $a y^2 = 0 y$ and $yy = -1$ is						
4.00	(a) $3v = 9x + 2$	(b) $v = 2x + 1$	(c) $2v = x + 8$	(d) $v = x + 2$			
	· · · ·						

Q.31	If t is considered as a parameter, then $x = a(t + \frac{1}{t})$ and $y = b(t - \frac{1}{t})$ represent.						
	(a) An ellipse	(b) A parabola	(c) A hyperbola	(d) A circle			
Q.32	The equation for the con	nmon tangent to the curve	es is	2			
	(a) $y = x + 2$	(b) $y = 2x + 1$	(c) $y = \frac{x}{2} + 4$	(d) $y = 3x + \frac{2}{3}$			
Q.33	The equation of the tang lengths of intercepts, is	ent to the hyperbola $3x^2$ -	$-4y^2 = 12$, which interse	cts the axes with equal			
	(a) $x - y + 1 = 0$	(b) $x + y + 1 = 0$	(c) $x + y - 1 = 0$	(d) All the correct			
Q.34	If the line $y = mx + r$	$\sqrt{a^2m^2-b^2}$, $m=\frac{1}{2}$ touch	hes the hyperbola $\frac{x^2}{16}$ –	$\frac{y^2}{3} = 1$ at the point			
	$(4 \sec \theta, \sqrt{3} \tan \theta)$ then θ is.						
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{4}$	(c) $\frac{2\pi}{3}$	(d) $\frac{\pi}{6}$			
Q.35	A common tangent to 9x	$^{2} - 16y^{2} = 144 \text{ and } x^{2} + $	$y^2 = 9$ is				
	(a) $y\sqrt{7} = \sqrt{2}x + 15$		(b) $y\sqrt{7} = 3\sqrt{2}x + 15$				
	(c) $y = 3\sqrt{2x} + 15$		(d) $y\sqrt{7} = 3x + 15$				
Q.36	The locus of the midpoi	nt of a chord of the hype	erbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$, which	pass through the fixed			
	point (1, 2) is a hyperbo	la whose eccentricity is.	_	_			
	(a) $\frac{3}{2}$	(b) $\frac{\sqrt{7}}{2}$	(c) $\frac{\sqrt{13}}{2}$	(d) $\frac{\sqrt{15}}{2}$			
Q.37	The center of a rectan	gular hyperbola lies on	the line $y = 3x$. If one	of the asymptotes is			
	x + y + 2 = 0, then the o	ther asymptote is.					
	(a) $x + y + 1 = 0$	(b) $x - y - 1 = 0$	(c) $x - y + 2 = 0$	(d) $x + y + 3 = 0$			
Q.38	If the angle between the	asymptotes of the hyperb	$rac{1}{16} - rac{9}{9} = 1$ is	4			
	(a) $\tan^{-1}(\frac{3}{4})$	(b) $2\tan^{-1}(\frac{3}{4})$	(c) $\tan^{-1}(\frac{4}{3})$	(d) $2\tan^{-1}(\frac{4}{3})$			
Q.39	If the normal to the rectangular hyperbola $xy = 4$ at the point $(2t_1, \frac{2}{t_1})$ meet the curve again at						
	$(2t_2, \frac{2}{t_2})$, then		-1				
	(a) $t_1^3 t_2 = 1$	(b) $t_1^3 t_2 = -1$	(c) $t_2^3 t_1 = 1$	(d) $t_1 t_2^3 = -1$			
Q.40	A hyperbola, with its center at the origin, passing through the point (4, 2), and having a transverse axis of length 4 along the x-axis, has an eccentricity of.						
	(a) $\frac{3}{2}$	(b) $\sqrt{3}$	(c) $\frac{2}{\sqrt{3}}$	(d) 2			
Q.41	The equation for a tange	nt to the hyperbola, $4x^2$ -	$-5y^2 = 20$, parallel to the	line $x - y = 2$ is			
0.42	(a) $x - y + 7 = 0$ (b) $x - y + 1 = 0$ (c) $x - y - 3 = 0$ (d) $x - y + 9 = 0$						
Q.42	in a hyperbola has a conjugate axis length equal to 5, and the distance between its foci is 13, the						
	(a) 2	(b) $\frac{13}{13}$	(c) $\frac{13}{13}$	$(d)\frac{13}{1}$			
0.43	If the vertices of a hyper	bola are at $(-2, 0)$ and $(2$	(0), and one of its foci is a	(-3, 0), which of the			
U	following points does no	t belong to this hyperbola	a?				
	(a) (4, √15)	(b) (6,5√2)	(c) $(2\sqrt{6}, 5)$	(d) $(-6, 2\sqrt{10})$			
Q.44	If the standard hyperbola passing through the point (4, 6) has an eccentricity of 2, then the						
	equation of the tangent t	to the hyperbola at $(4, 6)$	is. $(x) = 2x - 0$	(d) 2 2 – 0			
0.45	(a) $2x - 3y + 10 = 0$ If one of the directrices	(D) $X - 2y + 8 = 0$ s of a hyperbola centere	(c) $3x - 2y = 0$	(a) $2x - y - 2 = 0$ ing through the point			
Q.15	$(4 - 2\sqrt{3})$ is given by $5x = 4\sqrt{5}$ and its eccentricity is (a) then						
	(a) $4e^4 + 8e^2 - 35 = 0$ (b) $4e^4 - 24e^2 + 35 = 0$						
	(c) $4e^4 - 12e^2 - 27 = 0$		(d) $4e^4 - 24e^2 + 27 = 0$				
Q.46	If $5x + 9 = 0$, serves as	the directrix of the hyper	rbola $16x^2 - 9y^2 = 144$, t	hen its corresponding			
	tocus is located at	$d > c^{5} > c$					
	(a) $\left(\frac{1}{3}, 0\right)$	(b) $\left(-\frac{1}{3},0\right)$	(c) (-5,0)	(d) (5,0)			

- **Q.47** A line parallel to the straight line 2x y = 0 is tangent to the hyperbola $\frac{x^2}{4} \frac{y^2}{2} = 1$ at the point(x₁, y₁). Then x₁² + 5y₁² is equal to (a) 8 (b) 6 (c) 10 (d) 5
- **Q.48** Consider the point P (3, 3) lying on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ If the normal at point P intersects the x-axis at (9, 0) and e is its eccentricity, then the ordered pair (a^2, e^2) is equivalent to. (a) (9, 2) (

(a) (9,3) (b) $(\frac{9}{2},3)$ (c) $(\frac{3}{2},2)$ (d) $(\frac{9}{2},2)$ **Q.49** A hyperbola traverses the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ and its transverse and conjugate axes align with the major and minor axes of the ellipse, respectively. If the product of their eccentricities is one, then the equation of the hyperbola is.

(a) $\frac{x^2}{9} - \frac{y^2}{16} = 1$ (b) $x^2 - y^2 = 9$ (c) $\frac{x^2}{9} - \frac{y^2}{4} = 1$ (d) $\frac{x^2}{9} - \frac{y^2}{25} = 1$ Q.50 Suppose a line, L: 2x + y = k, k > 0, is a tangent to the hyperbola $x^2 - y^2 = 3$ If \(L\) is also a tangent to the parabola $y^2 = \alpha x$, then the value of α is.

(a)
$$-24$$
 (b) 24 (c) 12 (d) -12

Determine the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum for the hyperbolas.

Q.1 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ Q.2 $\frac{y^2}{9} - \frac{x^2}{27} = 1$ Q.3 $9y^2 - 4x^2 = 36$

Derive the equations for the hyperbolas that meet the specified criteria.

- **Q.4** Vertices $(\pm 2, 0)$, foci $(\pm 3, 0)$
- **Q.5** Foci $(\pm 35, 0)$, the latus rectum is of length 8.
- **Q.6** Vertices $(0, \pm 3)$, foci $(0, \pm 5)$
- **Q.7** If $20x^2 4y^2 = 80$ represent the equation of a hyperbola, then find the length of its latus rectum.
- **Q.8** For the hyperbola $25y^2 100x^2 = 100$, find the eccentricity and the co ordinates of the vertices and the foci.
- **Q.9** The tangent at any point of a hyperbola $16x^2 25y^2 = 400$ cut off a triangle from the asymptotes and that the portion of it intercepted between the asymptotes, then area of this triangle (in square units), is.
- **Q.10** Let $16x^2 3y^2 32x 12y = 44$ represent a hyperbola product of its square of eccentricity and length of latus rectum is λ then $3\sqrt{3}\lambda$ is.

ANSWER KEY – LEVEL – I

Q.	1	2	3	4	5	6	7	8	9	10
Ans.	b	С	а	b	С	а	а	d	b	d
Q.	11	12	13	14	15	16	17	18	19	20
Ans.	С	С	С	а	С	а	а	а	а	b
Q.	21	22	23	24	25	26	27	28	29	30
Ans.	а	С	а	С	С	d	b	d	а	d
Q.	31	32	33	34	35	36	37	38	39	40
Ans.	С	а	d	С	b	С	b	b	b	С
Q.	41	42	43	44	45	46	47	48	49	50
Ans.	b	d	b	d	b	С	b	b	а	а

ANSWER KEY – LEVEL – II

1. Foci (±5,0), Vertices (±4,0);
$$e = \frac{5}{4}$$
, Latus rectum $= \frac{9}{2}$

2. Foci (0 ± 6) , Vertices $(0, \pm 3)$; e = 2; Latus rectum = 18

3. Foci $(0, \pm \sqrt{13})$, Vertices $(0, \pm 2)$; $e = \frac{\sqrt{13}}{2}$, Latus rectum = 9

4.
$$\frac{x^2}{x} - \frac{y^2}{x} = 1$$

5.
$$\frac{x^2}{25} - \frac{y^2}{22} = 1$$

J.
$$\frac{1}{25} - \frac{1}{20} = 1$$

6. $\frac{y^2}{9} - \frac{x^2}{16} = 1$